JOB ROLE – WIREMAN-CONTROL PANEL

Sector – Electronics (Qualification Pack Code: ELE/Q7302)

PSS Central Institute of Vocational Education Shyamla Hills, Bhopal – 462013, Madhya Pradesh, India

UNIT 3: COMPONENT VALUE IDENTIFICATION

Content

Title	Slide No.
Unit Objectives	4
Introduction	5
Need of Component Value Identification	6
Identification of Resistor	8
Colour Coded Resistor	12
Calculation of Resistance Value	14
Alphanumeric Coded Resistor	16
Reading Capacitor Parameter	19
Summary	21

Unit Objectives

The student will be able to:

- Describe the need of component value identification,
- Identify resistors and it types,
- Calculate the resistance value using colour code method,
- Calculate the resistance value using alphanumeric code method,
- Identify capacitors and describe its types,
- Describe and read the parameters of capacitor.

Introduction

For a beginner, it is difficult to identify electrical and electronic components. To get an idea about the components, one needs to search for components data sheets. Component selection is a process of selecting a suitable component for an electric circuit. So that, electric circuit can perform its intended operation.

Need of Component Value Identification

What happen if fault occur in the circuit?

- It would not work.
- If there is a requirement of component replacement, then component value identification is necessary.
- Wrong replacement may damage the circuit or it may harm the user.

Identification of Resistors

- Resistors are the fundamental components of electrical and electronic industry.
- Resistance is measured in ohms.
- The ohmic value is mostly printed on the resistor in the form of a code.

Various Resistors

Symbol of resistor

• In a surface mount resistor the ohmic value is printed on the surface.

Surface Mount Resistor

• In a carbon film resistor the ohmic value is printed in the form of bands of colour code.

Colour Coded Resistor

Colour Code Chart

Way to memorise the sequence of colour code:

"B B ROY Great Britain have Very Good Wife".

Colour	Number
black	О
brown	1
red	2
orange	3
yellow	4
green	5
blue	6
violet	7
grey	8
white	9

Colour Coded Resistor

• Axial resistors are colour coded.

• Two patterns of axial resistor are four band or five band colour-coded resistors.

3-band and 4-band Resistors

In case of a four-band resistor:

- First two bands represent the significant digit,
- Third band represents multiplier,
- Fourth band represents tolerance.

In case of a five-band resistor:

- First three bands represent significant digits,
- Fourth band represents multiplier,
- Fifth band represents tolerance.

Resistance Calculation of 4-Band Resistor

- First band on a resistor is interpreted as the first number of the resistance value.
- Second band is the second number of resistance value.
- Third band is called the multiplier and represents the number of zeros.
- Fourth colour represents tolerance.

1st Band – Red (2) 2nd Band – Orange (3) 3rd Band – Green (10^5) 4th Band – Gold (±5%)

So, the resistance is 23 multiplied by 100000, which is equal to 2.3 M Ω ±5%.

Resistance Calculation of 5-Band Resistor

- First band on a resistor is interpreted as the first number of the resistance value.
- Second band is the second number of resistance value.
- Third band is the third number of resistance value.
- Fourth band is called the multiplier and represents the number of zeros.
- Fifth colour represents tolerance.

1st Band – Red (2)

2nd Band – Green (5)

3rd Band – Orange (3)

4th Band – Yellow (10⁴)

5th Band – Violet (±0.1%)

So, the resistance is 253 multiplied with 10,000 which is equal to 2.53 M Ω ±0.1%. This means for a value of 2.53 M Ω , the resistance value varies from 2529999.9 ohms to 2530000.1 ohms.

Alphanumeric Coded Resistor

• In surface mount resistor, the ohmic value is printed on the surface.

• This type of resistors are mounted on the printed circuit board.

Surface mount resistor mounted on circuit board

Resistance Calculation of Alphanumeric Coded Resistor

- Surface-mounted resistors are rectangular in shape.
- First 2 or 3 numbers printed on the surface mount resistor represents significant digits and the last digit represents the number of zero that should follow.
- Alphabet at the end of the code represents tolerance value.

For example, a code on surface mount resistor is 1252 indicates a value 125200 ohm, letter 'B' at the end of the code will give 0.1% tolerance value.

Tolerance value for various alphabets are as follows:

A: 0.05% tolerance

B: 0.1% tolerance

C: 0.25% tolerance

D: 0.5% tolerance

F: 1% tolerance

G: 2% tolerance

J:5% tolerance

K: 10% tolerance

M: 20% tolerance

Reading Capacitor Parameter

• Capacitor uses a wide variety of codes to describe its characteristics.

• Capacitance value printed on the capacitor.

Parameters on capacitor

Voltage Rating of Capacitor

• Small values of capacitance, the metric system is used as given below.

```
1 \text{ mF} = 0.001 \text{ farad} = 10^{-3} \text{ farads} 1 \text{ \muF} = 0.000001 \text{ farad} = 10^{-6} \text{ farads} 1 \text{ nF} = 0.000000001 \text{ farad} = 10^{-9} \text{ farads} 1 \text{ pF} = 0.0000000000001 \text{ farad} = 10^{-12} \text{ farads}
```

Tolerance Value of Capacitor

Tolerance value of capacitor is the maximum acceptable range of capacitance till the capacitor can work without damage.

Tolerance value on capacitor

Summary

- Resistor can be colour and alphanumeric coded.
- Resistance value determination using colour coded method.
- Resistance value determination using alphanumeric coded method.
- Parameters of capacitor are printed on the body of capacitor.

Project Coordinator: Dr. Dipak Shudhalwar

Assistance

Mr. Parag Shrivastava

Joint Director

PSS Central Institute of Vocational Education Shyamla Hills, Bhopal – 462013 , Madhya Pradesh, India

> E-mail: jdpsscive@gmail.com Tel. +91 755 2660691, 2704100, 2660391, 2660564 Fax +91 755 2660481 Website: www.psscive.ac.in