Draft Study Material

Web Developer

(QUALIFICATION PACK: Ref. Id. SSC/Q0503)
SECTOR: IT-ITeS

(Grade XII)

]

=
= -
X =
. =
= =
S S
==
X =

i

faaan s qaasTd

oI arah
NCSERT

PSS CENTRAL INSTITUTE OF VOCATIONAL EDUCATION

(a constituent unit of NCERT, under Ministry of Education,
Government of India) Shyamla Hills, Bhopal- 462 002, M.P., India
www.psscive.ac.in

Web Developer, Grade XII

© PSS Central Institute of Vocational Education, Bhopal 2024

No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior permission of the publisher.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Preface

Vocational Education is a dynamic and evolving field, and ensuring that every student has
access to quality learning materials is of paramount importance. The journey of the PSS
Central Institute of Vocational Education (PSSCIVE) toward producing comprehensive and
inclusive study material is rigorous and time-consuming, requiring thorough research, expert
consultation, and publication by the National Council of Educational Research and Training
(NCERT). However, the absence of finalized study material should not impede the educational
progress of our students. In response to this necessity, we present the draft study material,
a provisional yet comprehensive guide, designed to bridge the gap between teaching and
learning, until the official version of the study material is made available by the NCERT. The
draft study material provides a structured and accessible set of materials for teachers and
students to utilize in the interim period. The content is aligned with the prescribed curriculum
to ensure that students remain on track with their learning objectives.

The contents of the modules are curated to provide continuity in education and maintain the
momentum of teaching-learning in vocational education. It encompasses essential concepts
and skills aligned with the curriculum and educational standards. We extend our gratitude
to the academicians, vocational educators, subject matter experts, industry experts,
academic consultants, and all other people who contributed their expertise and insights to
the creation of the draft study material.

Teachers are encouraged to use the draft modules of the study material as a guide and
supplement their teaching with additional resources and activities that cater to their
students' unique learning styles and needs. Collaboration and feedback are vital; therefore,
we welcome suggestions for improvement, especially by the teachers, in improving upon the
content of the study material.

This material is copyrighted and should not be printed without the permission of the NCERT-
PSSCIVE.

Deepak Paliwal
(Joint Director)
PSSCIVE, Bhopal
Date: 24 September 2024

Web Developer, Grade XII

STUDY MATERIAL DEVELOPMENT COMMITTEE

MEMBER

Prof. K.V. Arya, ABV-Indian Institute of Information Technology & Management, Gwalior, M. P.
Prof. Vishal Goyal, Director, IQAC, GLA University, Mathura

Mr. Vijay Goswami, Founder & Director, Attrix Technologies, Agra, U.P.

Mr. Ankit Srivastav, NIT Agartala

MEMBER-COORDINATOR
Dr. Munesh Chandra, Professor (CSE), Department of Engineering and Technology, PSSCIVE,
NCERT, Bhopal

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

TABLE OF CONTENTS

S.No. Title Page No

1. Module 1. RELATIONAL DATABASE MANAGEMENT SYSTEM- |1-114
MYSQL
Module Overview 1
Learning Outcomes 1
Module Structure 1
Session 1. Database Management Concepts 2
Check Your Progress 30
Session 2. Describe Structured Query Language 33
Check Your Progress 73
Session 3. Use Functions in SQL 75
Check Your Progress 112

2. Module 2. SERVER-SIDE SCRIPTING USING PHP 115-201
Module Overview 115
Learning Outcomes 115
Module Structure 115
Session 1. PHP 116
Check Your Progress 143
Session 2. Array 145
Check Your Progress 156
Session 3. Functions in PHP 158
Check Your Progress 183
Session 4. Database 185
Check Your Progress 200

3. Module 3. HEALTH, SAFETY, INCLUSIVE AND SUSTAINABLE 202-368
ENVIRONMENT IN WORKPLACE
Module Overview 202
Learning Outcomes 202
Module Structure 202
Session 1. Achieve Optimum Productivity and quality 203

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Check Your Progress 240
Session 2. Explain the Importance of Implementing Health and Safety | 424
Procedures
Check Your Progress 266
Session 3. Demonstrate the Process of Organizing Waste Management | 269
and Recycling
Check Your Progress 280
Session 4. Importance of conserving resources 283
Check Your Progress 293
Session 5. Respect Diversity and Strength Practices to Promote 295
Equality
Check Your Progress 308
Session 6. Comply to PWD Inclusive Policies 312
Check Your Progress 366
4 Glossary -
S Answer Keys 369

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Module 1 Relational Database Management

System- Mysql

Module Overview

“A Relational Database Management System (RDBMS) is a cornerstone in the realm of
database technology, organizing and managing data through the relational model. In an
RDBMS, data is structured into tables, where each table represents a specific entity or
concept. These tables consist of rows, representing individual records, and columns,
defining attributes or characteristics. Key to the relational model is the establishment of
relationships between tables based on common fields, allowing for efficient data retrieval
and manipulation.

RDBMS systems enforce data integrity through primary keys, ensuring each record has a
unique identifier. Foreign keys establish connections between tables, fostering data
relationships. The normalization process is employed to reduce redundancy and
dependency, optimizing the database structure. SQL (Structured Query Language) serves as
the language for querying and managing RDBMS data, providing a standardized and
powerful means of interaction.

Adhering to ACID properties (Atomicity, Consistency, Isolation, Durability), RDBMS systems
guarantee reliable transactions, crucial for maintaining data integrity. Popular examples of
RDBMS include MySQL, PostgreSQL, Oracle Database, and Microsoft SQL Server. With their
well-defined structure, adherence to standards, and scalability, RDBMS systems are integral
to a wide array of applications, from business and finance to web development, where
organized and relational data management is paramount.”

In this Module, you will understand the concepts about Relational Database Management
System (RDBMS). In Session 1, you will learn about Database Management System, File
system and its limitations and DBMS commands. Furthermore, in Session 2, you will learn
about Structured Query Language, Installing steps of MySQL on Windows, Linux and
macOS, Data Types and Constraints, DDL commands, DML commands and DCL
Commands. And Lastly, In Session 3, you will learn about SQL Functions, Single Row
Functions-Math Functions, string Functions, date and Time Functions.

Learning Outcomes

Module Structure

Session 1. Database Management Concepts

Session 2. Describe Structured Query Language

Session 3. Use Functions in SQL

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII u
Session 1. Database Management Concepts

Maya loved exploring data. She heard about the Digital Archive, guarded by Oracle. Maya used
SQL commands to talk to the database. Along the way, she faced challenges but learned to unlock
them. Finally, Maya found lots of valuable information in the Digital Archive. She realized there's
still more to learn about data as shown in Figure 1.1.

Figure 1.1. Maya exploring database

In this Session, you will learn about Database Management System, File system and its
limitations and DBMS commands.

1.1 Introduction to Database systems

A Database Management System (DBMS) is a software system designed to manage and organize
data. A database is a collection of interrelated data, and a Database Management System (DBMS)
serves as the software that facilitates the creation, maintenance, and utilization of these
databases.

The fundamental purpose of a database system is to provide a centralized and coherent
storehouse for data, allowing users to easily retrieve, update, and manage information. It replaces
traditional paper-based or file-based systems, offering improved data integrity, security, and
accessibility. A well-designed database ensures data consistency and eliminates data redundancy
by organizing information into tables with defined relationships.

Key components of a database system include tables, which store data; a data dictionary,
describing the structure of the database; and a set of operations for querying and manipulating
data, typically expressed through SQL (Structured Query Language). The DBMS serves as an
intermediary between the user and the database, handling tasks such as data storage, retrieval,
and security.

DBMS plays a critical role in data storage, retrieval, security, and maintenance. Here's an
introduction to the key concepts and components of a Database Management System:

Data

Data is the raw information that a DBMS manages. It can be in various forms, including text,

numbers, multimedia, and more. Data is organized into tables, records, and fields in a structured
manner within a database.

Database

A database is a structured collection of data. It acts as a container for storing, managing, and
organizing data. Databases can range from small, single-user systems to large, enterprise-level
solutions.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

DBMS Functions

Data Storage: A DBMS stores data in a structured format, typically using tables, rows, and
columns.

Data Retrieval: It allows users and applications to query and retrieve data from the database
efficiently.

Data Manipulation: DBMS enables the modification, insertion, and deletion of data while enforcing
data integrity and consistency.

Data Security: It provides mechanisms to control access to data and maintain data privacy.

Data Concurrency: DBMS manages concurrent access to data by multiple users or processes,
preventing conflicts.

Data Recovery: DBMS includes features for data backup and recovery to protect against data loss.

Data Integrity: It enforces data integrity rules and constraints to maintain the accuracy and
consistency of the data.

Database Models

Relational Model: Data is organized into tables with rows (records) and columns (attributes).
Relational DBMSs like MySQL, Oracle, and PostgreSQL use this model.

NoSQL Model: These databases do not rely on a fixed schema and are suitable for unstructured
or semi-structured data. Examples include MongoDB and Cassandra.

Object-Oriented Model: Data is represented as objects with attributes and methods. This model is
used in some specialized databases.

Components of a DBMS

Data Definition Language (DDL): It defines the database structure, including creating, modifying,
and deleting tables and their relationships.

Data Manipulation Language (DML): It allows users to interact with the data, performing operations
like querying, inserting, updating, and deleting data.

Query Language: SQL (Structured Query Language) is commonly used to communicate with
relational DBMSs.

Query Optimizer: This component helps optimize the execution of queries for better performance.

Transaction Management: It ensures data consistency and integrity during concurrent access
through mechanisms like ACID properties (Atomicity, Consistency, Isolation, Durability).

Security and Authorization: DBMS provides user authentication and authorization to control
access to data.

Backup and Recovery: DBMS includes features for creating backups and restoring data in case of
failures.

Types of DBMS

Single-User DBMS: Designed for use by a single user, often for personal or small-scale
applications.

Multi-User DBMS: Supports concurrent access by multiple users, making it suitable for enterprise-
level applications.

Centralized DBMS: The database is located on a single server.

Distributed DBMS: The database is distributed across multiple servers for scalability and fault
tolerance.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

Cloud-Based DBMS: Hosted in the cloud, allowing for easy scaling and accessibility from
anywhere.

A well-designed DBMS is essential for efficiently managing and leveraging data in today's data-
driven world, making it a fundamental tool in information technology and data management.

Assignment.1.1:

1. List the requirement of database System
2. List and compare the various DBMS.

3. List down the components of DBMS

4. List down the types of DBMS

1.2 File system and its limitations

A file system is a method of organizing and storing computer files and the data they contain. It
provides a structured way to store, access, and manage data on storage devices such as hard
drives, SSDs, and external storage media. However, file systems have several limitations:

Hierarchical Structure

File systems are typically organized in a hierarchical or tree-like structure of directories (folders)
and files. This structure may not be the most efficient way to represent all types of data, especially
complex or interconnected data.

A hierarchical structure, in the context of computing and file systems, refers to an organizational
arrangement where data is organized in a tree-like or pyramid-shaped structure. This structure
is composed of levels or layers, with each level representing a category or container, and items
within each level containing further sub-items. The top-level item is the root, and the subsequent
levels are branches or nodes. This organization allows for a systematic and easily navigable
representation of data.

Key characteristics of hierarchical structures include:

e Root Node: The topmost level of the hierarchy, representing the starting point or main
category. All other levels and items stem from this root.

e Nodes and Branches: Nodes represent individual items or categories within each level, and
branches connect nodes to their parent nodes. Each node, except the root, has one parent node
and can have multiple child nodes.

e Parent-Child Relationships: The hierarchical structure defines clear parent-child
relationships between nodes. A node is a child of the node directly above it and a parent to any
nodes directly beneath it.

e Directories and Subdirectories: In file systems, directories (folders) and subdirectories are
commonly used to implement a hierarchical structure. Directories contain files or additional
subdirectories, creating a nested organizational system.

e Navigation: Users can navigate through the hierarchy by moving up and down levels, following
branches to access specific items or categories. This structure provides a logical and intuitive
way to locate and organize information.

e Example in File Systems: In a file system, a hierarchical structure is evident when organizing
files and folders. For instance, a root directory may contain subdirectories for different projects,
and each project directory may further contain subdirectories for specific tasks or file types.

Hierarchical structures are widely used in various computing applications, including file systems,
database management, and organizational systems. They offer a straightforward and visually

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

intuitive method for arranging and accessing information, contributing to efficient data
management and user interaction.

File Naming and Path Length Limitations:

File systems often have limitations on file naming and path length, which can impact how files
are stored and accessed. These limitations vary between different file systems and operating
systems. Here are some common considerations:

File Naming Limitations:

Character Restrictions: File names may have restrictions on the characters allowed. For example,
certain special characters, symbols, or reserved keywords may be disallowed. File systems may
also be case-sensitive or case-insensitive, depending on the operating system.

Length Limitations: File names typically have a maximum length. Exceeding this limit can result
in errors, and the file may become inaccessible or difficult to manage.

Whitespace Handling: Some file systems may have limitations on the use of spaces or other
whitespace characters in file names. This can affect interoperability between different systems.

Reserved Names: Certain names may be reserved for system use or have specific meanings, and
using them for regular files may lead to conflicts or unexpected behaviour.

Path Length Limitations:

Total Path Length: In addition to file name length, there may be restrictions on the total length of
the path to a file. This includes the lengths of directory names and the separators (like
backslashes or forward slashes) between them.

Nested Directory Limitations: Some file systems may impose limits on the number of nested
directories or subdirectories within a path. This can impact the depth of the directory structure.

Operating System Variations: Different operating systems have different limits. For example,
Windows traditionally had a 260-character path length limitation (MAX_PATH), which could lead
to issues when dealing with deeply nested directories and long file names. Recent versions of
Windows (starting with Windows 10) have introduced some flexibility to address this limitation.

Limited Metadata: File systems typically provide a set of metadata associated with each file,
offering essential information about the file's characteristics and attributes. However, there are
certain limitations to the extent and richness of metadata that file systems may support. Here are
some common considerations regarding limited metadata:

Basic Attributes: Most file systems provide fundamental metadata attributes such as file name,
size, creation date, and last modification date. These attributes are essential for basic file
management but may not capture more nuanced information.

Limited Descriptive Information: File systems may lack support for detailed descriptive
metadata. While some file formats allow embedded metadata (e.g., EXIF data in images), the file
system itself may not facilitate storing additional information about the file's content, purpose, or
context.

Custom Metadata: Some applications or user scenarios may require custom metadata attributes
specific to their needs. Traditional file systems often do not support user-defined or custom
metadata fields, limiting the ability to tailor metadata to unique requirements.

Versioning and Revision History: File systems may not inherently maintain a comprehensive
versioning or revision history for files. Advanced versioning features are often handled by version
control systems or specific applications rather than the file system itself.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

Limited Search and Classification: In some cases, file systems may not support advanced
search capabilities based on metadata attributes, making it challenging to locate files based on
specific criteria beyond basic file properties.

Interoperability Challenges: Metadata standards can vary between different file systems and
operating systems. This lack of standardized metadata can pose challenges when sharing or
transferring files across diverse environments.

Security Metadata: While file systems usually include basic security attributes like file
permissions, they may not provide more granular security metadata, such as information about
access control lists or detailed auditing information.

File Size Limitations: File size limitations refer to the maximum allowable size of an individual
file that a file system or storage device can accommodate. These limitations are determined by the
underlying file system and the specifications of the storage medium. Here are several
considerations regarding file size limitations:

File System Dependencies: Different file systems have varying constraints on file sizes. For
example, FAT32, a common file system used in removable storage devices, has a maximum file
size limit of 4 gigabytes. In contrast, newer file systems like NTFS (New Technology File System)
and exFAT support much larger individual file sizes.

Operating System Variations: The limitations on file size can also depend on the operating
system. The same file system may have different size constraints when used on Windows, Linux,
or macOS.

Storage Medium Capacity: The capacity of the storage medium itself plays a crucial role. For
instance, if a storage device has limited space, it will naturally have restrictions on the size of
individual files.

Compression and Encryption Impact: File size limitations may be influenced by factors such
as file compression and encryption. Compressed or encrypted files can have different effective
sizes than their uncompressed or unencrypted counterparts.

Application-specific Constraints: Certain applications or software tools may impose their own
limitations on the size of files they can handle. For example, email attachments or file upload
features on websites often have size restrictions.

Cloud Storage Considerations: Cloud storage services may have their own file size limitations.
These limitations can impact the seamless transfer of large files to and from cloud-based storage
platforms.

Transactional Considerations: In some cases, the file size limit is tied to transactional
considerations. For example, certain database systems may have constraints on the size of files
that can be efficiently processed in a single transaction.

No Built-in Data Validation: The term "No Built-in Data Validation" typically refers to a situation
where a system, software application, or database lacks native mechanisms to automatically
validate and ensure the accuracy, integrity, and conformity of the data entered or processed
within it. Here are some key considerations related to the absence of built-in data validation:
Data Integrity Concerns: Without built-in data validation, there is an increased risk of data
integrity issues. Invalid or inconsistent data may be introduced, leading to errors, inaccuracies,
and potential downstream issues.

Security Risks: Inadequate data validation can create security vulnerabilities. Malicious actors
may exploit input fields or manipulate data to execute attacks such as SQL injection or cross-site
scripting, compromising the system's security.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

User Error Impact: Users might unintentionally enter incorrect or inappropriate data. Without
validation mechanisms in place, these errors may go unnoticed, impacting the reliability and
quality of the data.

Data Quality Challenges: Lack of data validation hinders the maintenance of high data quality
standards. Inconsistent or improperly formatted data can make it challenging to derive accurate
insights, generate reports, or conduct meaningful analysis.

Compatibility Issues: Systems with no built-in data validation may face challenges when
interacting with other systems or databases that expect certain data formats or constraints. This
can lead to compatibility issues during data exchanges.

Cumbersome Error Detection: Identifying and rectifying data errors become a manual and
potentially time-consuming process when there is no automated validation. This can result in
delays and increased workload for data administrators.

Regulatory Compliance: In industries where compliance with regulations and standards is
crucial, the absence of built-in data validation may lead to non-compliance issues. Regulatory
bodies often mandate accurate and secure handling of data.

Custom Validation Requirements: Some applications or industries may have unique data
validation requirements. Without built-in support for custom validation rules, meeting specific
business needs becomes challenging.

Lack of Concurrent Access Control: The "Lack of Concurrent Access Control" refers to a
situation where a system, database, or application does not have adequate mechanisms in place
to manage and control concurrent access to data by multiple users or processes. This absence of
proper concurrent access control can lead to various issues related to data consistency, integrity,
and security. Here are some key considerations:

Data Inconsistency: Without concurrent access control, multiple users or processes may attempt
to modify the same data simultaneously. This can result in data inconsistency, where changes
made by one user may conflict with those made by another, leading to unpredictable or erroneous
outcomes.

Concurrency Anomalies: Lack of control over concurrent access can give rise to concurrency
anomalies such as lost updates, uncommitted data, and inconsistent retrievals. These anomalies
can compromise the reliability of the data.

Race Conditions: Race conditions occur when the outcome of an operation depends on the timing
or sequence of events. In the absence of proper concurrent access control, race conditions can
lead to unpredictable and undesirable results, impacting the reliability of the system.

Security Risks: Concurrent access control is essential for ensuring that sensitive data is accessed
and modified securely. Without proper controls, there is an increased risk of unauthorized access
or unintended data exposure.

Transaction Isolation Issues: In database systems, the lack of concurrent access control can
affect transaction isolation levels. Users may experience phenomena like dirty reads, non-
repeatable reads, or phantom reads, compromising the isolation of transactions.

Performance Bottlenecks: On the flip side, excessive locking mechanisms used for concurrent
access control can lead to performance bottlenecks. Striking the right balance between data
consistency and system performance is crucial.

Resource Contention: Multiple users contending for the same resources without proper control
can lead to resource contention, causing delays and reduced system efficiency.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

Collisions in Distributed Systems: In distributed systems where data is accessed and modified
across different locations or nodes, lack of concurrent access control can result in collisions and
conflicts between distributed processes.

Data Duplication: Data duplication refers to the existence of identical or similar sets of data in
multiple locations within a system, database, or across different systems. While some level of
redundancy is often necessary for data backup and performance optimization, uncontrolled or
unnecessary duplication can lead to various challenges and issues. Here are some considerations
related to data duplication:

Inconsistency and Redundancy: Unmanaged data duplication can result in inconsistencies and
redundancy across the system. When changes are made to one copy of the data, other duplicates
may become outdated or contain conflicting information.

Data Quality Issues: Duplicate data can lead to data quality issues, such as inconsistencies,
errors, and inaccuracies. It becomes challenging to maintain a single, authoritative source of truth
when multiple copies of the same data exist.

Increased Storage Requirements: Storing redundant copies of data consumes additional storage
space. This not only increases storage costs but also affects system performance, especially in
scenarios where large volumes of duplicated data must be managed.

Complexity in Data Maintenance: Managing and maintaining duplicate data can be complex
and resource-intensive. Updates, corrections, or deletions must be applied consistently across all
duplicates to avoid discrepancies.

Impact on System Performance: Excessive data duplication can impact system performance,
as more resources are needed to manage and process redundant data. This can result in slower
query times, increased network traffic, and longer backup processes.

Difficulty in Data Integration: Data integration becomes more challenging when duplicate data
is present. Merging or consolidating data from different sources becomes a complex task, and
inconsistencies may arise during the integration process.

Data Governance and Compliance Issues: Data governance practices, including compliance
with regulations and standards, may be compromised when dealing with duplicate data. Ensuring
data accuracy, security, and adherence to privacy regulations becomes more complex.

Increased Risk of Errors: Having multiple copies of the same data increases the risk of errors,
especially when manual processes are involved. Inaccurate updates or modifications to one copy
may not be reflected in others.

Addressing data duplication involves implementing data management strategies and best
practices:

Normalization: Designing databases with normalized structures to minimize redundancy.
Data Deduplication: Employing techniques or tools to identify and eliminate duplicate records.

Master Data Management (MDM): Implementing MDM practices to ensure a single, authoritative
source for critical data.

Data Quality Monitoring: Regularly monitoring and enforcing data quality standards to identify
and address duplication.

Automated Processes: Implementing automated processes for data updates and synchronization
to reduce the likelihood of manual errors.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

By managing data duplication effectively, organizations can improve data accuracy, reduce
storage costs, enhance system performance, and ensure compliance with data governance
standards.

Limited Security: “File systems may offer basic access control and permissions settings, but
they often lack advanced security features, leaving data vulnerable to unauthorized access.”

The statement highlights a common concern in the realm of file systems, pointing out that while
many file systems provide basic access control and permissions settings, they may lack more
advanced security features. Here are key considerations related to this limitation:

Basic Access Control: File systems typically include basic access control mechanisms, allowing
administrators to set permissions such as read, write, and execute for different users or groups.
However, these basic controls may not be sufficient to address more sophisticated security needs.

Limited Granularity: Basic access controls may have limitations in terms of granularity. For
example, some file systems might not support fine-grained access control where specific
permissions can be set for individual users or specific operations.

Absence of Encryption: Many file systems do not inherently provide encryption features, leaving
data vulnerable to unauthorized access if the storage medium is compromised. Encryption is
crucial for protecting data at rest and preventing unauthorized reading of file contents.

No File-level Auditing: Advanced security features often include auditing capabilities at the file
level, allowing organizations to track who accessed, modified, or deleted specific files. Without
these features, it may be challenging to perform detailed forensic analysis in the event of a security
incident.

Missing Intrusion Detection: Advanced security measures may include intrusion detection
mechanisms that can identify and respond to unauthorized access attempts or suspicious
activities. File systems lacking such features may be less capable of detecting and mitigating
security threats.

Access Monitoring and Reporting: The absence of advanced security features may limit the
ability to monitor and report on user access patterns. This is crucial for identifying unusual or
potentially malicious behaviour that could indicate a security threat.

Authentication Challenges: File systems may not integrate seamlessly with advanced
authentication methods such as multi-factor authentication (MFA) or biometrics. Without these,
the risk of unauthorized access due to compromised credentials increases.

Limited Support for Compliance: Industries with regulatory compliance requirements may find
basic access controls insufficient for meeting data protection standards. Advanced security
features are often necessary for compliance with regulations like GDPR, HIPAA, or PCI DSS.

Vulnerability to Insider Threats: Basic access controls might not effectively address insider
threats where authorized users intentionally or unintentionally misuse their access privileges.
Advanced security features can provide additional safeguards against such risks.

Inefficient Searching: Finding specific files can be inefficient, especially when dealing with a
large number of files, due to the lack of efficient search and query capabilities. This inefficiency
often arises from the absence of advanced search and query capabilities. Here are key
considerations related to inefficient searching in file systems:

Limited Search Functionality: Basic file systems may offer simple search functionalities based
on file names or basic attributes. However, they may lack more advanced search capabilities,
such as searching within file contents, using metadata, or employing complex queries.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Slow Search Performance: In scenarios where file systems lack optimized search algorithms,
searching for specific files can become slow and resource-intensive, especially as the number of
files within a directory or across the system increases.

Inability to Search within File Contents: Basic search features may focus solely on file names
and attributes, overlooking the content within files. This limitation makes it challenging to find
files based on specific keywords or phrases contained in the file content.

Limited Metadata Search: Some file systems may lack robust support for searching based on
metadata attributes, such as author, creation date, or custom tags. Advanced search capabilities
often require a more metadata-rich environment.

No Full-Text Search: Full-text search, which enables searching for specific words or phrases
within the entire text content of files, may not be available in basic file systems. This limitation
can hinder users trying to locate information within documents.

Complex Directory Structures: Inefficient searching is exacerbated in complex directory
structures with numerous nested folders. Users may struggle to navigate through the directory
hierarchy to find the desired files, leading to wasted time and effort.

Lack of Search Filters: The absence of search filters or advanced query options can make it
difficult for users to narrow down search results based on specific criteria, such as file type, size,
or modification date.

Limited Wildcard Support: Basic file systems may have limited support for wildcard characters
in search queries, restricting users from employing flexible and powerful search patterns.

Indexing Challenges: Without proper indexing mechanisms, searching can be less efficient.
Indexing involves creating a catalogue or database of file information, enabling quicker search
operations. Some file systems may lack robust indexing capabilities.

No Native Version Control: File systems do not provide built-in version control, making it
difficult to manage different versions of a file over time. Version control is a crucial function

nality for managing changes to files over time, and its absence in basic file systems can lead to
several challenges. Here are key considerations related to the lack of native version control:

No History Tracking: Basic file systems do not automatically track the history of changes made
to files. Without version control, users may find it challenging to review or revert to previous
versions of a file.

Difficulty in Collaboration: In collaborative environments, where multiple users work on the
same file, the absence of version control makes it challenging to manage concurrent edits.
Coordinating changes and avoiding conflicts becomes more difficult without a versioning system.

Risk of Overwriting Changes: Without version control, there is a risk of accidentally overwriting
important changes made by others. When multiple users are working on a file, the lack of
versioning increases the likelihood of data loss or conflicts.

Limited Rollback Options: When errors or unwanted changes occur, basic file systems may not
offer efficient mechanisms to roll back to a specific version of a file. Users may need to rely on
manual backups or copies.

No Branching and Merging: More advanced version control systems support branching and
merging, allowing users to work on different branches of a project and later integrate changes
seamlessly. Basic file systems lack these capabilities, making complex collaborative workflows
less manageable.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Missing Annotation and Comments: Version control systems often allow users to annotate
changes with comments, providing context about why a specific modification was made. Without
version control, this valuable information may be missing.

Impact on Code and Development: In software development, version control is integral for
managing source code changes. Without built-in version control, developers may resort to manual
methods, increasing the risk of introducing bugs and hindering collaboration.

No Support for Tagging Releases: Version control systems enable the tagging of releases or
specific versions of a project. Basic file systems lack this capability, making it challenging to
identify and archive specific milestones or versions.

Know more...

To address the lack of native version control, organizations often turn to dedicated version control
systems like Git, Subversion, or Mercurial. These systems provide comprehensive versioning,
collaboration, and branching features.

Limited Data Portability:

Files stored within a specific file system may not be easily portable to other systems or platforms
due to differences in file formats, naming conventions, and metadata. This issue arises when files
stored in a particular file system face difficulty in being seamlessly transferred or used across
different systems or platforms. Several factors contribute to this limitation:

File Format Incompatibility:

Different file systems may have varying degrees of compatibility with certain file formats. Some
file formats may be specific to certain applications or platforms, making it challenging to open or
use files across diverse systems.

Naming Convention Differences:

File systems may have different rules and conventions for file and directory names. Incompatible
naming conventions can lead to issues when transferring files between systems, as certain
characters or naming structures may not be supported universally.

Metadata Variations:

Metadata, such as file attributes, tags, or timestamps, may be managed differently across file
systems. Incompatibilities in metadata structures can result in loss of information or
discrepancies when files are moved between systems.

Platform-Specific Features:

Some file systems may support platform-specific features or attributes that are not recognized by
others. Files relying on these features may lose functionality or encounter issues when moved to
a system that does not support them.

Encoding and Character Set Challenges:

Differences in character encoding or character sets between file systems can lead to data
corruption or misinterpretation when files are transferred. Ensuring compatibility in this regard
is crucial for preserving data integrity.

Storage Media Differences:

File systems may be optimized for specific types of storage media, and moving files between
systems with different storage characteristics (e.g., hard drives, SSDs, cloud storage) may lead to
performance issues or compatibility challenges.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Security and Access Controls:

File systems may have varying approaches to security, access controls, and permissions.
Transferring files between systems with different security models may result in unintended access
or restrictions.

Lack of Standardization:

The absence of standardized file formats or protocols across different file systems contributes to
challenges in data portability. Standardization efforts can facilitate smoother data interchange.

Know more...

To enhance data portability, organizations often adopt strategies such as using open and widely
supported file formats, adhering to common naming conventions, and employing standardized
protocols for data interchange.

Scalability Challenges: As the number of files and data grows, managing and organizing them
within a file system can become increasingly complex and less efficient. As the volume of files and
data increases, several complexities arise that can impact the efficiency and manageability of the
file system. Here are key considerations related to scalability challenges:

Directory Structure Overhead: As the number of files grows, maintaining a coherent and
efficient directory structure becomes more challenging. Navigating through an extensive hierarchy
of directories can lead to slower access times and increased complexity.

Performance Degradation: Scalability challenges often lead to performance degradation. File
access times may increase, and operations like searches or directory listings may become slower,
affecting overall system responsiveness.

Metadata Overhead: Managing metadata for an extensive number of files can result in increased
overhead. Metadata includes information such as file attributes, permissions, and timestamps.
The larger the dataset, the more metadata needs to be processed and stored.

Backup and Restore Complexity: As data scales, backup and restore processes become more
complex. Performing backups and restoring data efficiently becomes crucial, and scalability
challenges may affect the speed and reliability of these operations.

File System Fragmentation: Scalability can contribute to file system fragmentation, where data
is stored in non-contiguous blocks on storage media. Fragmentation can impact performance, as
the system must read data from multiple locations.

Search and Retrieval Delays: Searching for specific files becomes less efficient as the number of
files increases. Without optimized search mechanisms, users may experience delays in finding
the files they need, leading to decreased productivity.

Increased Storage Costs: Managing a large number of files may necessitate additional storage
resources. Scalability challenges can result in increased storage costs as organizations need to
expand their storage infrastructure to accommodate growing datasets.

Metadata and Indexing Limitations: Traditional file systems may have limitations in metadata
handling and indexing mechanisms. Scalability challenges can exacerbate these limitations,
impacting the ability to quickly locate and retrieve specific files.

Concurrency Issues: Concurrent access to files by multiple users or processes becomes more
challenging with scalability issues. As the system grows, ensuring efficient and secure concurrent
access becomes crucial.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Complexity in Data Lifecycle Management: Managing the lifecycle of data, including archiving,
retention, and deletion, becomes more complex with a large number of files. Ensuring compliance
with data management policies becomes challenging as the dataset scales.

Fragmentation: File systems can experience file fragmentation, which can slow down data access
and retrieval, especially on traditional hard drives. Here are key considerations related to
fragmentation:

Definition of Fragmentation: File fragmentation occurs when the data comprising a file is stored
in non-contiguous blocks on a storage medium. Instead of being stored in a single, continuous
block, a file's data is scattered in fragments across different locations on the disk.

Causes of Fragmentation: Fragmentation can be caused by various factors, including file
creation, deletion, and modification. As files are added, removed, or modified over time, free space
becomes dispersed, leading to fragmented storage.

Impact on Data Access: Fragmentation can impact the speed of data access and retrieval. When
reading a fragmented file, the system needs to access multiple non-contiguous locations on the
disk, leading to increased seek times and slower overall access.

Performance Degradation on Hard Drives: Traditional hard disk drives (HDDs) are particularly
susceptible to the performance impact of fragmentation. The mechanical nature of HDDs involves
physically moving read /write heads to access different parts of the disk, making fragmented data
retrieval less efficient.

File System Optimization: Some file systems include built-in mechanisms for managing
fragmentation, such as defragmentation tools. These tools reorganize files and free space on the
disk to reduce fragmentation and improve overall performance.

SSD Considerations: Solid-state drives (SSDs) are less affected by fragmentation compared to
HDDs because they have no moving parts, and access times are not influenced by physical seek
times. However, certain file systems may still benefit from optimization strategies on SSDs.

Dynamic File Allocation: Some file systems use dynamic allocation strategies to minimize
fragmentation. These strategies allocate contiguous space when a file is created or modified,
reducing the likelihood of fragmentation.

Periodic Defragmentation: For file systems prone to fragmentation, periodic defragmentation is
a common practice. This process rearranges files and free space on the disk to improve data
locality and reduce the need for scattered reads.

Fragmentation Impact on Large Files: Large files are particularly susceptible to fragmentation.
When a file cannot be stored in a contiguous block, it may be divided into multiple fragments,
leading to increased access times when reading or writing the file.

Operating System Considerations: Different operating systems may handle fragmentation
differently. Some operating systems provide automatic background defragmentation, while others
require manual intervention.

Lack of Transactions: Many file systems do not support transactional operations, which can lead
to data inconsistencies in cases of system failures during updates. Transactions are essential for
ensuring data integrity, especially during updates or modifications to files. Here are key
considerations related to the absence of transactions in file systems:

Definition of Transactions: Transactions are sequences of one or more operations (e.g., file
updates or modifications) that are treated as a single, atomic unit. In a transaction, either all
operations are executed successfully, or none of them are.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Data Consistency Concerns: Without transactional support, file systems are more susceptible
to data inconsistencies, particularly in scenarios where updates involve multiple steps. If a failure
occurs during an update, the file system may be left in an inconsistent state.

System Failures and Rollback: In the absence of transactions, if a system failure (such as a
power outage or hardware failure) occurs during a file update, there may be no mechanism to
automatically roll back the partial changes, potentially leaving the system in an inconsistent state.

Concurrency Issues: Transactions are crucial for managing concurrent access to files by multiple
users or processes. Without transactional support, concurrent updates may result in data
corruption or incomplete modifications if proper synchronization mechanisms are not in place.

No ACID Properties: Transactions typically adhere to the ACID properties (Atomicity,
Consistency, Isolation, Durability), which ensure reliability and integrity. The lack of transactional
support may compromise these properties, leading to data anomalies.

Complexity in Error Handling: Handling errors and exceptions becomes more complex without
transactions. In the event of an error, ensuring that the system reverts to a consistent state may
require manual intervention or complex error-handling mechanisms.

Impact on Database Systems: While file systems may lack transactional support, database
management systems (DBMS) often provide robust transactional capabilities. In scenarios where
data consistency is critical, using a DBMS with transaction support may be a preferred solution.

Application-Level Workarounds: In the absence of native file system transactions, application
developers may need to implement custom mechanisms to emulate transactional behaviour. This
adds complexity to application code and may not provide the same level of reliability.

Rollback Challenges: If an operation partially completes before a failure occurs, there may be
challenges in rolling back the changes to maintain consistency. Transactional systems typically
have mechanisms to handle partial updates and ensure proper rollback.

Data Recovery Issues: Recovering from data inconsistencies after a system failure becomes more
challenging without transactional support. Manual intervention may be required to identify and
rectify inconsistencies.

Inflexibility: File systems are less flexible when it comes to data modelling compared to databases
or other structured storage systems. Here are key considerations related to this inflexibility.

Lack of Schema: File systems typically lack a predefined schema for organizing and describing
data. Unlike databases, where data is structured according to a defined schema, file systems rely
on a hierarchical structure of directories and files, providing limited metadata.

Unstructured Data Handling: File systems are well-suited for storing unstructured data, such
as documents, images, or multimedia files. However, they may not enforce or encourage a specific
structure or organization for the data, leading to challenges in maintaining consistency and
metadata.

Limited Query and Indexing Capabilities: File systems generally lack the sophisticated query
and indexing capabilities found in databases. Retrieving specific data or performing complex
searches may be less efficient, especially when dealing with large datasets.

Challenges in Data Relationships: Establishing and managing relationships between pieces of
data can be challenging in file systems. Databases offer relational models that facilitate the
representation of complex relationships, which is not a native feature of file systems.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Practical Activity 1.1. Create a chart to show Fragmentation Simulation

Materials Needed

A large piece of paper or a whiteboard to represent the storage medium.

Sticky notes or colored markers to represent data blocks.

Index cards to represent file metadata.

Procedure

Step 1. Divide the class into groups of 3-4 students.

Step 2. Distribute sticky notes or markers to each group, representing data blocks.
Step 3. Use the large piece of paper or whiteboard as the storage medium.

Step 4. Students create a simple representation of a file system on the storage medium using the
sticky notes.

Step 5. Students create files by placing the sticky notes on the storage medium.
Step 6. Once all groups have created their file systems, simulate data access and retrieval.
Step 7. Choose a file for each group and ask them to retrieve it.

Step 8. Students note the time taken to retrieve files that are fragmented versus those stored
contiguously.

Step 9. Discuss the differences in access times.

1.3 Database Management Systems (DBMS)

A Database Management System (DBMS) is a software suite designed to efficiently create, manage,
organize, and retrieve data in a database. DBMS provides a structured and secure environment
for data storage, supporting functionalities such as Data Definition Language (DDL) for defining
database structure, Data Manipulation Language (DML) for interacting with data, and a
standardized query language like SQL for querying and managing data. It ensures data integrity
through the enforcement of constraints, including primary keys, foreign keys, and unique
constraints.

Key features include transaction management to maintain the ACID properties (Atomicity,
Consistency, Isolation, Durability), concurrency control for multi-user access, security
mechanisms for access control and authentication, and backup and recovery tools for data
protection. DBMS also supports indexing and query optimization for efficient data retrieval and
manipulation. Popular types include relational database management systems (RDBMS) like
MySQL, PostgreSQL, Oracle, and SQL Server, as well as non-relational databases (NoSQL) like
MongoDB and Cassandra, catering to diverse data storage and processing requirements. The
choice of a DBMS depends on factors such as data structure, scalability needs, and the nature of
the application.

A Database Management System (DBMS) is software that facilitates the creation, organization,
retrieval, management, and manipulation of data in a database. It provides an interface for users
and applications to interact with the database, ensuring efficient and secure data storage and
retrieval. Key components and features of DBMS include:

Data Definition Language (DDL)

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

DDL allows users to define and manage the structure of the database, including creating tables,
specifying data types, defining relationships, and setting constraints.

Data Definition Language (DDL) is a subset of SQL (Structured Query Language) used to define
and manage the structure of a relational database. DDL statements are responsible for creating,
modifying, and deleting database objects, such as tables, indexes, and constraints. Key DDL
statements include:

CREATE

The CREATE statement is used to define new database objects. For example, CREATE TABLE is
used to create a new table with specified columns and data types as shown in Figure 1.2.

o0 e +

CREATE TABLE employees (
employee_id INT PRIMARY KEY,
first_name VARCHAR(S5@),
last_name VARCHAR(S5®),
hire_date DATE

Fig. 1.2: CREATE
ALTER

The ALTER statement is used to modify the structure of existing database objects. It can be used
to add, modify, or drop columns, constraints, or indexes as shown in Figure 1.3.

o0 e +

ALTER TABLE employees
ADD COLUMN email VARCHAR(100);

Fig. 1.3: ALTER
DROP

The DROP statement is used to remove database objects, such as tables or indexes, from the
database as shown in Figure 1.4.

o0 e -+

DROP TABLE employees;

Fig. 1.4: DROP
TRUNCATE

The TRUNCATE statement is used to remove all rows from a table but retain the table structure
for future use as shown in Figure 1.5.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

ece

TRUNCATE TABLE employees;

Fig. 1.5: TRUNCATE
COMMENT

The COMMENT statement is used to add comments or descriptions to various database objects
as shown in Figure 1.6.

COMMENT ON COLUMN employees.first_name IS "First name of the employee”;

Fig. 1.6 COMMENT

DDL statements are crucial for database administrators and developers in managing the database
schema, ensuring data integrity, and adapting the database structure to evolving business
requirements. It is important to note that DDL statements are typically executed by users with
higher privileges, such as database administrators, as they involve structural changes to the
database.

Data Manipulation Language (DML): DML enables users to interact with the data stored in the
database. Common DML operations include inserting, updating, deleting, and querying data.

Data Manipulation Language (DML) is a subset of SQL (Structured Query Language) that enables
users to interact with and manipulate the data stored in a relational database. DML statements
are used for querying, inserting, updating, and deleting data within database tables. Key DML
statements include:

SELECT

The SELECT statement is used to retrieve data from one or more tables. It can specify conditions,
filter criteria, and define the structure of the result set as shown in Figure 1.7.

o0e -+

SELECT first_name, Llast_name
FROM employees
WHERE department_id = 10;

Fig. 1.7: SELECT
INSERT

The INSERT statement is used to add new rows of data into a table as shown in Figure 1.8.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

ove +

INSERT INTO employees (first_name, last_name, department_id)
VLAUES ('vijay', 'Goswami', 38);

Fig. 1.8: INSERT
UPDATE

The UPDATE statement is used to modify existing data in a table based on specified conditions
as shown in Figure 1.9.

o0 e +

UPDATE employees
SET salary = salary * 1.1
WHERE department_id = 20;

Fig. 1.9: UPDATE
DELETE

The DELETE statement is used to remove rows from a table based on specified conditions as
shown in Figure 1.10.

o0 e -+

DELETE FROM employees
WHERE department_id = 3@;

Fig. 1.10: DELETE
MERGE
The MERGE statement is used to perform a combination of insert, update, and delete operations

based on a specified condition. It is useful for upset operations (insert or update) as shown in
Figure 1.11.

eove -+

MERGE INTO tardet_table USING source_table
ON (target_table.id = source_table.id)
WHEN MATCHED THEN|
UPDATE SET tardet_table.value = source_table.value
WHEN NOT MATCHED THEN
INSERT (id, value) VALUES (source_table.id, source_table.value);

Fig. 1.11: MERGE

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

DML statements are crucial for interacting with and maintaining the data in a relational database.
They allow applications and users to perform various operations on the data, ensuring that the
database remains dynamic and responsive to changing requirements. These statements are
commonly used in conjunction with Data Definition Language (DDL) statements to manage both
the structure and content of a relational database.

Query Language: Most DBMSs use a standardized query language, such as SQL (Structured
Query Language), for retrieving and manipulating data. SQL allows users to express complex
queries to filter, sort, and aggregate data.

A query language is a specialized programming language designed for retrieving, managing, and
manipulating data from databases. In the context of databases, the term "query language" is often
associated with languages used to interact with relational databases. SQL (Structured Query
Language) is the most widely used and recognized query language for relational databases. Key
aspects of a query language include:

Data Retrieval

The primary purpose of a query language is to retrieve data from a database. This includes
specifying the data to be retrieved, conditions for retrieval, and the structure of the result set as
shown in Figure 1.12.

eve -+

SELECT columnl, column2
FROM table
WHERE condition;

Fig. 1.12: Data Retrieval
Data Modification

Query languages also support operations that modify data in the database. This includes
inserting, updating, and deleting records as shown in Figure 1.13.

L ®
INSERT INTO table (columnl, column2) VALUES (wvaluel, wvalue2);

UPDATE table SET columnl = new_value WHERE condition;

DALETE from table WHERE condition;
Fig. 1.13: Data Modification
Data Definition

Some query languages, such as SQL, include Data Definition Language (DDL) statements for
defining and managing the structure of a database as shown in Figure 1.14.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

o0 e

CREATE TABLE table_name (columnl datatype, column2 datatype, ...);
ALTER TABLE table_name ADD COLUMN column_name datatype;

DROP TABLE table_name;

Fig. 1.14: Data Definition
Data Control

Query languages often include statements for managing access to the database, including user
privileges and security settings as shown in Figure 1.15.

e -+

GRANT SELECT, INSERT on table TO user;

REVOKE DELETE ON table FROM user;
Fig. 1.15: Data Control
Aggregation and Analysis

Query languages support functions for aggregating and analysing data, allowing users to perform
calculations and obtain summary statistics as shown in Figure 1.16.

o0 e

SELECT AVG(column) AS average_value, COUNT(x) AS total_rows
FROM table
WHERE conditicnﬂ

Fig. 1.16: Aggregation and Analysis
Sorting and Filtering:

Query languages provide capabilities for sorting and filtering data, allowing users to control the
order and scope of the result set as shown in Figure 1.17.

eove -+

SELECT columnl, column2
FROM table

WHERE condition|

ORDER BY columnl ASC;

Fig. 1.17: Sorting and Filtering

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Practical Activity 1.2. Creating a Database Table for Real-Life Examples
Materials Needed

Chart paper or whiteboard, Markers, Sample data related to the chosen real-life example, Access to a
database management system (optional)

Procedure

Stepl. Take an example of library catalog, attributes may include Book ID, Title, Author, Genre, and
Availability Status.

Step 2. Draw a large chart on the chart paper or whiteboard to represent the database table.
Step 3. Label the columns with the identified attributes, leaving space for records to be filled in later.

Step 4. If using a database management system, write syntax to create a table with the defined
attributes. For example, in SQL:

CREATE TABLE Library Catalog (BookID INT PRIMARY KEY, Title VARCHAR (100), Author VARCHAR
(100), Genre VARCHAR (50), Availability Status VARCHAR (20));

Step 5. Provide sample data related to the chosen example, or ask students to come up with their own
data.

Step 6. Fill in the records of the database table with the sample data, ensuring that each attribute has
appropriate values.

1.3.1. Transaction Management:

DBMS ensures the atomicity, consistency, isolation, and durability (ACID properties) of
transactions. Transactions are sequences of operations that are executed as a single unit, either
entirely or not at all. Transaction management is a critical aspect of database systems, ensuring
the consistency, integrity, and reliability of data operations. Transactions are sequences of one or
more database operations (such as inserts, updates, or deletes) that are executed as a single,
atomic unit. The principles of transaction management are often encapsulated by the ACID
properties: Atomicity, Consistency, Isolation, and Durability.

Atomicity: Atomicity ensures that a transaction is treated as a single, indivisible unit. Either all
of its operations are executed successfully, or none of them are. If any part of the transaction
fails, the entire transaction is rolled back to its previous state.

Consistency: Consistency ensures that a transaction brings the database from one consistent
state to another. If the database is consistent before the transaction, it should remain consistent
after the transaction is executed. Constraints and rules defined in the database schema must not
be violated.

Isolation: Isolation ensures that the execution of one transaction is isolated from the execution
of other transactions. Each transaction appears to execute in isolation, unaware of other
concurrent transactions. This property prevents interference between transactions and maintains
data integrity.

Durability: Durability guarantees that once a transaction is committed, its effects persist even in
the event of system failures such as power outages or crashes. Committed changes are
permanently stored in the database, ensuring that they are not lost.

Transaction management is facilitated by the following components and concepts:

Transaction Control Statements: Transaction control statements in SQL, such as COMMIT and
ROLLBACK, are used to explicitly end a transaction by either making its changes permanent
(commit) or undoing them (rollback) as shown in Figure 1.18.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

ove +

BEGIN TRANSACTION;
—5S0L operations

COMMIT; —— oxr ROLLBACK;

Fig. 1.18: Transaction Control Statements

Transaction Isolation Levels: Isolation levels, such as Read Uncommitted, Read Committed,
Repeatable Read, and Serializable, define the degree to which transactions are isolated from each
other. Different isolation levels balance concurrency and consistency.

Concurrency Control Mechanisms: Concurrency control mechanisms, including locking and
timestamp-based methods, prevent conflicts between concurrent transactions. Locks are used to
control access to data, ensuring that transactions do not interfere with each other.

Logging and Undo/Redo Logs: Logging mechanisms record the changes made during a
transaction. Undo and redo logs are used to roll back or roll forward changes in the event of a
system failure, ensuring durability.

Two-Phase Commit (2PC): In distributed databases, the Two-Phase Commit protocol is used to
ensure that transactions are either committed or rolled back consistently across all participating
nodes.

1.3.2. Concurrency Control

DBMS manages concurrent access to the database by multiple users or processes, preventing
conflicts and ensuring data consistency. Techniques like locking and isolation levels are used to
control concurrent access.

Concurrency control is a crucial aspect of database management systems (DBMS) that ensures
transactions can be executed concurrently without compromising the consistency and integrity of
the database. Concurrency control mechanisms prevent conflicts and maintain data consistency
in multi-user environments where multiple transactions may be executed simultaneously. Key
concepts and techniques in concurrency control include.

Locking: Locking is a fundamental mechanism in concurrency control. It involves acquiring locks
on data items to control access. Different types of locks, such as shared locks and exclusive locks,
prevent conflicting operations on the same data. Locks are released when transactions are
committed or rolled back.

Isolation Levels: Isolation levels define the degree to which the execution of one transaction is
isolated from the effects of other concurrently executing transactions. Common isolation levels
include Read Uncommitted, Read Committed, Repeatable Read, and Serializable. Higher isolation
levels provide stronger consistency guarantees but may reduce concurrency.

Serializability: Serializability ensures that the outcome of executing a set of concurrent
transactions is equivalent to some serial execution of those transactions. It guarantees that the
database state remains consistent, as if transactions were executed one after the other.

Timestamp Ordering: Timestamp-based concurrency control assigns a unique timestamp to each
transaction based on its start time. Transactions are ordered based on their timestamps, and
conflicts are resolved by comparing timestamps. This approach helps enforce a consistent order of
transactions.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

Optimistic Concurrency Control: Optimistic concurrency control assumes that conflicts are
infrequent. Transactions proceed without locks, and conflicts are detected at the point of commit.
If a conflict is detected, the system takes corrective action, such as rolling back one of the
conflicting transactions.

Multi version Concurrency Control (MVCC): MVCC maintains multiple versions of a data item
to allow different transactions to work with different versions simultaneously. Each transaction
sees a snapshot of the database as it existed at the start of the transaction. MVCC is commonly
used in snapshot isolation.

Deadlock Detection and Resolution: Deadlocks, where transactions are blocked waiting for each
other, are a potential issue in concurrent systems. DBMSs employ deadlock detection mechanisms
to identify deadlocks and resolution strategies, such as aborting one of the transactions involved.

Two-Phase Locking (2PL): Two-Phase Locking is a protocol in which transactions acquire locks
in two phases: a growing phase where locks can be acquired, and a shrinking phase where locks
cannot be released. This ensures that no locks are released until the transaction has acquired all
needed locks.

Concurrency Control in Distributed Systems: In distributed databases, additional challenges
arise due to the need for coordination among multiple nodes. Two-Phase Commit (2PC) and
distributed locking mechanisms are used to ensure consistency in distributed environments.
Data Integrity: DBMS enforces data integrity constraints to ensure that data remains accurate
and consistent. This includes primary key constraints, foreign key constraints, unique constraints,
and check constraints.

Data integrity refers to the accuracy, consistency, and reliability of data stored in a database. It
ensures that data remains accurate and unaltered throughout its lifecycle, from creation to
deletion. Maintaining data integrity is essential for ensuring the reliability of information and the
effectiveness of database systems. Key aspects of data integrity include:

Entity Integrity: Entity integrity ensures that each row in a table is uniquely identified by a
primary key, and that the primary key attribute is not null. This prevents duplicate records and
ensures each record can be uniquely identified.

Referential Integrity: Referential integrity ensures the consistency of relationships between
tables. It is enforced through foreign key constraints, ensuring that values in a foreign key column
match primary key values in another table.

Domain Integrity: Domain integrity ensures that data values adhere to specified data types and
constraints. For example, a date column should only contain valid dates, and a numeric column
should only contain numeric values.

Check Constraints

Check constraints are used to enforce specific conditions on data values in a table. This helps
prevent the insertion of invalid or inconsistent data into the database as shown in Figure 1.19.

eve -+

CREATE TABLE employees (
employee_id INT PRIMARY KEY,
salary DECIMAL(1®, 2) CHECK (salary = 0)
);
Fig. 1.19: Check Constraints

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

Unique Constraints

Unique constraints ensure that values in a specified column or combination of columns are
unique across the table. This prevents duplicate entries in key columns as shown in Figure 1.20.

eve -+

CREATE TABLE department (
department_id INT PRIMARY KEY,
department_name VARCHAR(5G@) UNIQUE

);

Fig. 1.20: Unique Constraints

Triggers: Triggers are database objects that can be used to automatically enforce data integrity
rules or perform actions in response to certain events, such as INSERT, UPDATE, or DELETE
operations.

Assertions: Assertions define conditions that must be true for the database to be in a consistent
state. They are used to express complex integrity constraints that cannot be easily represented
using other mechanisms.

Data Validation: Data validation mechanisms ensure that data entered into the database meets
predefined standards. This includes validating input formats, range checks, and ensuring data
conforms to business rules.

Concurrency Control: Concurrency control mechanisms, such as locking and isolation levels,
help maintain data integrity by preventing conflicts between concurrent transactions and
ensuring consistency in a multi-user environment.

Backup and Recovery: Regular database backups and recovery procedures are essential for
maintaining data integrity. In the event of data corruption, system failures, or human errors,
backups allow for the restoration of a consistent and reliable database state.

Assignment.1.2:

e List down the Data Definition Language (DDL) statements
e Write down the syntax of TRUNCATE
e Write down the syntax of SELECT

1.4 Limitations Advantages and Disadvantages of DBMS
Advantages of DBMS:

Data Integrity: DBMS enforces data integrity constraints, ensuring that data stored in the
database is accurate and consistent.

Data Security: Access to the database can be controlled, and sensitive data can be protected
through authentication and authorization mechanisms.

Data Independence: Changes to the database structure (schema) do not affect the application
programs or queries, providing a level of abstraction and reducing dependencies.

Concurrency Control: DBMS manages concurrent access to the database, ensuring that multiple
users can access and modify data simultaneously without conflicting with each other.

Data Abstraction: DBMS provides a high-level abstraction of the data, allowing users to interact
with the data without needing to understand the underlying complexities of storage and retrieval.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII m

Query Language: The use of SQL or other query languages makes it easier to retrieve and
manipulate data, allowing users to express complex queries in a simple and standardized way.
Scalability: Many DBMS systems are designed to scale, allowing for the efficient storage and
retrieval of large volumes of data as the system grows.

Backup and Recovery: DBMS provides tools and mechanisms for backing up and recovering
data, reducing the risk of data loss in the event of system failures.

Reduced Data Redundancy: Normalization techniques in relational databases help minimize
data redundancy and improve data consistency.

Disadvantages of DBMS:

Cost: Implementing and maintaining a DBMS can be expensive, involving licensing fees, hardware
costs, and personnel training.

Complexity: Managing a DBMS can be complex, requiring specialized knowledge and skills.
Database administrators (DBAs) may be needed to ensure optimal performance and security.
Performance Overhead: DBMS introduces some performance overhead due to the additional
processing required for data management, especially in large and complex databases.

Data Migration and Integration: Moving data between different DBMS systems or integrating
data from various sources can be challenging and may require additional tools and efforts.
Vendor Lock-In: Choosing a specific DBMS may result in vendor lock-in, making it difficult to
switch to another system without significant effort and cost.

Limitations of DBMS:

Scalability Limits: While many DBMS systems are scalable, there are limits to their scalability,
and reaching these limits may require complex solutions.

Complex Upgrade Processes: Upgrading a DBMS system can be a complex process, requiring
careful planning and testing to avoid disruptions to ongoing operations.

Security Concerns: While DBMS systems provide security features, they are not immune to
security threats. Vulnerabilities in the software or misconfigurations can expose data to
unauthorized access.

Learning Curve: Users and administrators may face a learning curve when adapting to a new
DBMS, especially if it has a different architecture or features compared to other systems they are
familiar with.

1.5 Comparison of DBMS with File System
A Database Management System (DBMS) and a File System serve as methods for organizing,

storing, and retrieving data, but they differ significantly in their approaches and capabilities.
Here's a comparison between DBMS and a File System:

Features File System DBMS

Data Structure | Files are typically organized | Data is organized in tables with rows
hierarchically in folders/directories. | and columns in a structured
Each file may contain data, and there | manner. Relationships between
is little structure imposed on the | tables can be established for a more
data within files. organized and efficient structure.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII m

Data Data redundancy is common | Data redundancy is minimized
Redundancy because the same data may be | through normalization, reducing the
duplicated across multiple files. risk of inconsistencies and

improving data integrity.

Data Integrity Enforcing data integrity is the | Data integrity is maintained through
responsibility of the application | the implementation of integrity
programs; there are no inherent | constraints, such as primary keys,
mechanisms for ensuring | foreign keys, and check constraints.
consistency.

Data Changes to data formats or | Data independence is achieved, as

Independence structures may require modifications | changes to the database schema do
to application programs, leading to a | not necessarily affect the application
lack of data independence. programs interacting with the data.

Query Retrieving and manipulating data | SQL or another query language is

Language usually involve custom code within | used, providing a standardized and
application programs. efficient way to interact with the

database.

Security Security measures are typically | Security features are integrated,
implemented at the file level, with | with user authentication,
access controls managed by the | authorization, and encryption
operating system. capabilities to control access at both

the database and object levels.

Concurrent Managing concurrent access to data | Implements concurrency control

Access can be challenging and may require | mechanisms to allow multiple users
manual coordination within | to access and modify data
application programs. simultaneously without conflicts.

Performance Performance may degrade as data | Optimizations such as indexing,
and file sizes increase, and | caching, and query optimization are
optimizations are limited. built-in, leading to better

performance for data retrieval and
manipulation.

Scalability Scaling a file system can be | Many modern DBMS systems are
challenging, especially in large and | designed for scalability, allowing for
complex environments. efficient management of large

datasets.

Use Cases Suitable for simple data storage | Ideal for applications that require
needs, such as document storage, | structured data, relationships, and
where data relationships and | complex queries, such as business
complex queries are not critical. applications, e-commerce platforms,

and data-driven applications.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

1.6 Concepts in DBMS

Database Management Systems (DBMS) involve several key concepts that are fundamental to
understanding how data is organized, stored, and manipulated. Here are some essential concepts
in DBMS:

Database: A database is a structured collection of data that is organized and stored in a way that
enables efficient retrieval and manipulation. It can include tables, relationships, views, and other
objects.

Table: A table is a fundamental component of a relational database. It consists of rows and
columns, where each row represents a record, and each column represents a field or attribute.

Row (Tuple): A row, also known as a tuple, represents a single record in a table. It contains values
for each attribute defined by the table's schema.

Column (Attribute): A column, also known as an attribute, represents a specific type of data
within a table. It defines the kind of information that can be stored in that column.

Schema: The schema defines the structure of the database, including the tables, fields,
relationships, and constraints. It serves as a blueprint for how data is organized.

Primary Key: A primary key is a unique identifier for a record in a table. It ensures that each row
can be uniquely identified and helps enforce data integrity.

Foreign Key: A foreign key is a column in a table that refers to the primary key in another table.
It establishes a link between the two tables, creating a relationship.

Relationship: A relationship is an association between tables based on common fields. It defines
how data in one table relates to data in another, creating dependencies.

Normalization: Normalization is the process of organizing data to minimize redundancy and
dependency. It involves breaking down large tables into smaller, related tables.

Index: An index is a data structure that improves the speed of data retrieval operations on a
database table. It provides a quick lookup mechanism based on specific columns.

SQL (Structured Query Language): SQL is a domain-specific language used for managing and
manipulating relational databases. It includes commands for querying, updating, and managing
database data and schema.

Transaction: A transaction is a sequence of one or more SQL statements that are executed as a
single unit of work. It follows the ACID properties (Atomicity, Consistency, Isolation, Durability)
to ensure data integrity.

Concurrency Control: Concurrency control mechanisms manage the simultaneous execution of
transactions to prevent conflicts and maintain data consistency in a multi-user environment.

Data Integrity Constraints: Constraints, such as primary keys, foreign keys, unique constraints,
and check constraints, are rules that enforce data integrity by defining the relationships and
properties of data.

Data Dictionary: A data dictionary or data catalogue is a repository that stores metadata about
the database, including information about tables, columns, indexes, and other database objects.
1.7 Relational Data Model

The Relational Data Model is a conceptual framework used in database design to organize and
structure data. Proposed by E.F. Codd in 1970, the model is based on the principles of set theory
and mathematical logic. It has become the foundation for most modern database management
systems (DBMS), known as Relational Database Management Systems (RDBMS).

Key components of the Relational Data Model:

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

Tables (Relations): Data is organized into tables, also known as relations. Each table represents
a specific entity (e.g., customers, products) and consists of rows and columns.

Rows (Tuples): Each row in a table represents a single record or data instance. It contains a set
of values, one for each column, corresponding to the attributes of the entity.

Columns (Attributes): Columns define the attributes or properties of the data. Each column has
a specific data type (e.g., integer, varchar) that enforces data integrity.

Primary Key: Tables typically have a primary key, which is a unique identifier for each record.
The primary key ensures the uniqueness of each row and serves as a reference for establishing
relationships with other tables.

Foreign Key: A foreign key is used to establish relationships between tables. It references the
primary key of another table, creating a link between the two.

Normalization: The process of normalization is applied to reduce data redundancy and
dependency by breaking down large tables into smaller, related tables. This ensures efficient
storage and minimizes the risk of inconsistencies.

Integrity Constraints: The Relational Data Model enforces integrity constraints, such as primary
key constraints, unique constraints, and referential integrity, to maintain the accuracy and
consistency of data.

SQL (Structured Query Language): SQL is the standard language for interacting with relational
databases. It provides commands for querying, updating, and managing data within the relational
model.

1.8 Keys in relational Database

In relational databases, keys are fundamental components that establish relationships between
tables and ensure the integrity of the data. Different types of keys serve distinct purposes within
the database structure. Here are the key types commonly used in relational databases:

Primary Key (PK): A primary key uniquely identifies each record (row) in a table. It ensures data
integrity by preventing duplicate and null values. Typically, a primary key is chosen from one or
more columns that have unique values for each row.

Foreign Key (FK): A foreign key establishes a link between two tables. It refers to the primary
key of another table, creating a relationship between them. Foreign keys are used to maintain
referential integrity, ensuring that values in the foreign key column correspond to existing values
in the referenced primary key column.

Composite Key: A composite key consists of two or more columns that, together, uniquely
identify a record in a table. While each individual column might not be unique, the combination
of columns ensures uniqueness.

Super Key: A super key is a set of one or more columns that, when taken collectively, can uniquely
identify a row in a table. It is a broader concept than a primary key, as it can include more
columns than necessary for uniqueness.

Candidate Key: A candidate key is a minimal super key, meaning it is a set of columns that
uniquely identifies a row, and no subset of those columns provides the same uniqueness. From
the candidate keys, one is selected as the primary key.

Alternate Key: An alternate key is a candidate key that was not chosen as the primary key. While
it is not used as the main identifier, it still uniquely identifies rows in the table.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

Unique Key: A unique key is a constraint that ensures the values in a specified column or
combination of columns are unique across the table. It is similar to a candidate key but is not
necessarily the primary key.

Natural Key: A natural key is a key that is derived from the natural characteristics of the data it
represents. For example, in a table of employees, the social security number could serve as a
natural key.

Assignment.1.3:

e List down the Key components of the Relational Data Model
e List down the names of keys in relational Database.

Practical Activity 1.3. Identify primary key and other keys in database table.

Materials Required

Pen and paper, Worksheet with sample tables, Computer with database software (optional).
Procedure

Step 1. Draw a large chart on the chart paper or whiteboard. Divide it into sections representing
different sample database tables.

Step 2. Label each section with the name of a sample table, such as "Students," "Books," "Teachers,"
etc.

Step 3. Draw rows and columns within each section to represent the attributes (columns) and
records (rows) of the sample tables.

Step 4. Select one sample table and identify which attribute or combination of attributes serves as
the primary key.

Step 5. Write the identified primary key(s) in a prominent place within the corresponding section
of the chart.

SUMMARY

e A Database Management System (DBMS) is a software suite designed to efficiently create,
manage, organize, and retrieve data in a database.

e DBMS provides functionalities such as Data Definition Language (DDL) for defining
database structure, Data Manipulation Language (DML) for interacting with data, and a
standardized query language like SQL.

e [t ensures data integrity through constraints like primary keys, foreign keys, and unique
constraints.

o Key features include transaction management to maintain ACID properties, concurrency
control, security mechanisms, and backup and recovery tools.

e Popular types include relational database management systems (RDBMS) like MySQL,
PostgreSQL, Oracle, and SQL Server, as well as non-relational databases (NoSQL) like
MongoDB and Cassandra.

e DDL includes statements like CREATE, ALTER, DROP, TRUNCATE, and COMMENT, used
for defining, modifying, and deleting database objects.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

e DML enables users to interact with and manipulate data using statements like SELECT,
INSERT, UPDATE, DELETE, and MERGE.

e SQL is a widely used query language for relational databases, facilitating data retrieval,
modification, and control.

e Transaction management ensures ACID properties: Atomicity, Consistency, Isolation, and
Durability, through control statements, isolation levels, concurrency control mechanisms,
and logging.

e Concurrency control mechanisms like locking, isolation levels, serializability, and

optimistic concurrency control manage concurrent access to the database.

e Data integrity is maintained through constraints, triggers, validation mechanisms, and
concurrency control.

e Security and access control include authentication, authorization, encryption, audit trails,
and database firewalls to protect data from unauthorized access.

e Indexing and query optimization enhance query performance by using indexes, query
rewriting, statistics, caching, and buffering.

e Backup and recovery mechanisms ensure data durability and availability by facilitating
regular backups and restoring the database to a consistent state in case of failures.

Check Your Progress

A. Multiple choice Questions

1. What is the primary purpose of a Database Management System (DBMS)? (a) To create
paper-based systems (b) To organize and manage vast amounts of data (c) To replace
traditional file-based systems (d) To facilitate data redundancy

2. Which term refers to the raw information that a DBMS manages? (a) Database (b) Data
Model (c) Data Dictionary (d) Data

3. What is the role of a data dictionary in a database system? (a) Store multimedia data (b)
Describe the structure of the database (c) Manage data security (d) Handle data retrieval
operations

4. Which language is commonly used for querying and manipulating data in relational
DBMSs? (a) Python (b) Java (c) C++ (d) SQL

5. What is the fundamental purpose of data normalization in a well-designed database? (a)
To enforce data integrity (b) To eliminate data redundancy (c) To provide data security (d)
To facilitate data retrieval

6. What component of a DBMS helps optimize the execution of queries for better
performance? (a) Query Language (b) Data Definition Language (DDL) (c) Query Optimizer
(d) Transaction Management

7. Which database model organizes data into tables with rows and columns? (a) Object-
Oriented Model (b) NoSQL Model (c) Relational Model (d) Distributed Model

8. What is the role of a DBMS in data concurrency? (a) Managing concurrent access to data
(b) Ensuring data privacy (c) Creating data backups (d) Defining database structures

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

9. What mechanism is used to record changes made during a transaction for recovery
purposes? (a) Logging (b) Two-Phase Commit (2PC) (c) Locking (d) Timestamp-based
concurrency control

10.In distributed databases, what protocol is used to ensure consistent commitment or
rollback across all participating nodes? (a) Logging (b) Two-Phase Commit (2PC) (c)
Deadlock Detection (d) Transaction Isolation

B. Fill in the blanks:

1. The INSERT statement is used to add new of data into a table.

2. The ALTER statement is used to the structure of existing database objects.

3. The statement is used to modify existing data in a table based on specified
conditions.

4. The statement is used to perform a combination of insert, update, and delete
operations based on a specified condition. It is useful for upsert operations (insert or
update).

5. Data Manipulation Language (DML) is a subset of that enables users to interact
with and manipulate the data stored in a relational database.

6. File systems are typically organized in a hierarchical or of directories (folders)
and files.

7. The statement is used to remove all rows from a table but retain the table

structure for future use.

8. The statement is used to modify the structure of existing database objects.
9. The COMMENT statement is used to add to various database objects.
10.DML operations include inserting, updating, , and querying data.

C. True or False
1. DDL statements are responsible for data manipulation in a database.

2. Two-phase locking is a protocol used in concurrency control where locks can be released
before a transaction acquires all needed locks.

3. Transaction management ensures ACID properties, including Atomicity, Consistency,
Isolation, and Durability.

4. Multi version Concurrency Control (MVCC) maintains multiple versions of a data item to
allow different transactions to work with the same version simultaneously.

5. Deadlock detection mechanisms in DBMS are used to identify live locks and resolve them
automatically.

6. Two-Phase Commit (2PC) is a protocol used in distributed databases to ensure that
transactions are either committed or rolled back consistently across all participating
nodes.

7. Locking is a concurrency control mechanism that prevents conflicting operations on the
same data by acquiring locks on data items.

8. Query optimization involves rewriting queries to a less efficient form to improve execution
speed.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

9. Data integrity constraints ensure the consistency and reliability of data stored in a
database.

10.Role-Based Access Control (RBAC) simplifies access control by granting the same
permissions to all users regardless of their roles.

D. Short Answer type questions.
1. What does DBMS stand for, and what is its primary function?
Define RDBMS and explain its significance in database management.
What is a primary key in RDBMS, and why is it important?
Differentiate between DBMS and RDBMS.
Explain the concept of foreign keys in RDBMS and their role in maintaining data integrity.
Describe the purpose of Data Definition Language (DDL) in DBMS.
What is the Comparison of DBMS with File System
What are the advantages and disadvantages of DBMS

0 0 Nou RN

Write down the syntax to create a table

10.What is Transaction Management?

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII a

Session 2. Describe Structured Query Language

In Agra, there was a girl named Sunita who really liked numbers. One day, she found a book
about Structured Query Language (SQL) at the library. She got interested and started reading it.
Sunita wanted to be like a detective for data. With what she learned from the book, she helped
the bakery and the librarian organize things better. Soon, she was solving all kinds of problems
using data for the whole town. Sunita got better and better at it, and everyone started to rely on
her for anything related to data. She even won a competition about data! After that, Sunita kept
using SQL to solve problems in Agra, making things better for everyone. Her story encouraged
others to learn about SQL and see how useful data can be as shown in Figure 2.1.

Figure 2.1. Sunita studying SQL

In this Session, you will learn about Structured Query Language, Installing steps of MySQL on
Windows, Linux and macOS, Data Types and Constraints, DDL commands, DML commands and
DCL Commands.

2.1. Introduction

Structured Query Language (SQL) is a powerful and standardized programming language
designed for managing and manipulating relational databases. Developed in the 1970s, SQL
serves as the cornerstone for communication with relational database management systems
(RDBMS). Its primary functions include data retrieval, insertion, updating, and deletion, making
it an integral part of database administration and development.

SQL operates through a set of declarative statements, allowing users to interact with databases
seamlessly. Common SQL commands include SELECT for retrieving data, INSERT for adding new
records, UPDATE for modifying existing data, and DELETE for removing records. The language's
syntax is straightforward, using keywords like WHERE, JOIN, and GROUP BY to refine queries
and operations.

SQL supports the definition and manipulation of database structures through Data Definition
Language (DDL) statements. Tables, indexes, and constraints can be created, altered, or dropped
using SQL, facilitating efficient database schema management.

Its versatility extends to Data Manipulation Language (DML) statements, enabling the execution
of operations on data records. SQL's standardized nature ensures portability across various
relational database systems, such as MySQL, PostgreSQL, and Microsoft SQL Server. Its
widespread adoption and consistent syntax make SQL an essential tool for developers, database

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

administrators, and data analysts in managing and extracting meaningful insights from relational
databases.

2.2, Structured Query Language

Structured Query Language (SQL) is a domain-specific programming language designed for
managing, manipulating, and querying relational databases. Developed in the 1970s, SQL has
become the standard language for interacting with database management systems (DBMS) and
is employed across various platforms and database implementations.

Key features of SQL include:

Data Retrieval (SELECT): SQL's SELECT statement allows users to retrieve data from one or
more tables based on specified criteria. It supports filtering, sorting, and grouping to tailor results
to specific requirements.

Data Manipulation (INSERT, UPDATE, DELETE): SQL provides commands for adding new
records (INSERT), modifying existing data (UPDATE), and removing records (DELETE) in a
database. These Data Manipulation Language (DML) statements ensure the integrity and
accuracy of the stored information.

Data Definition (CREATE, ALTER, DROP): SQL includes commands for defining and managing
the structure of a database. With Data Definition Language (DDL) statements, users can create
tables, modify their structure, and remove them from the database.

Data Control (GRANT, REVOKE): SQL allows administrators to control access to the database
by granting or revoking permissions on tables and other database objects. This ensures security
and privacy in a multi-user environment.

Transaction Control (COMMIT, ROLLBACK): SQL supports transactions, allowing users to
group multiple SQL statements into a single, atomic operation. Transactions can be committed
to persist changes or rolled back to revert to the previous state.

Data Integrity (Constraints): SQL enables the definition of constraints, such as unique, primary
key, foreign key, and check constraints, to enforce data integrity rules within the database.
Joins and Relationships: SQL facilitates the establishment of relationships between tables
through JOIN operations. This allows for the retrieval of related data from multiple tables in a
single query.

SQL is vendor-agnostic, meaning that while different database management systems may have
specific implementations and extensions, the core SQL language remains largely consistent.
Popular relational database systems that use SQL include MySQL, PostgreSQL, Microsoft SQL
Server, and Oracle Database. SQL's widespread adoption and standardized syntax make it an
essential skill for database administrators, developers, and data analysts in managing and
extracting information from relational databases.

2.3. Installing RDBMS Package (MySQL)

Installation Steps for MySQL:

1. Choose the MySQL Edition:

MySQL comes in different editions, such as MySQL Community Edition (free and open-source)
and MySQL Enterprise Edition (commercial, with additional features). For general use and
learning purposes, the Community Edition is usually sufficient.

2. Download MySQL Installer:

Visit the official MySQL website: MySQL Downloads.

Choose the MySQL Installer for your operating system (Windows, Linux, macOS).

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII B

3. Run the Installer:

Execute the downloaded installer.

For Windows: Double-click the installer file (e.g., mysql-installer-community-<version>.exe).
For Linux: Open a terminal and navigate to the directory containing the installer.

Make the installer executable: chmod +x mysql-installer-community-<version>.<extension>
Run the installer: ./mysql-installer-community-<version>.<extension>

For macOS: Double-click the installer package.

4. MySQL Installer Setup: Follow the steps in the MySQL Installer to set up MySQL. The installer
typically provides options to install MySQL Server, MySQL Workbench (a graphical tool for
managing databases), and other MySQL products.

5. Choose Setup Type: During installation, you may be prompted to choose a setup type:
Developer Default: Suitable for development environments.

Server Only: Installs only the MySQL server.

Custom: Allows you to customize the installation components.

6. Configure MySQL Server: Specify the MySQL server configuration, including port number,
user accounts, and password.

7. Complete the Installation: Review the installation summary and click "Execute" or "Finish"
to complete the installation.

8. Verify Installation: Open MySQL Workbench (if installed) and connect to the MySQL server
using the credentials you specified during installation.

Alternatively, you can use the command-line tool to connect (mysql -u your_username -p) and
execute SQL queries.

Congratulations! You've successfully installed MySQL on your system. Now, you can start creating
databases, tables, and managing data using MySQL.

MySQL stands out as a leading relational database management software extensively utilized in
contemporary industries. Renowned for its robust multi-user access capabilities and diverse
storage engines, MySQL is developed and supported by Oracle Company. In the upcoming section,
beginners will discover the step-by-step process of downloading and installing MySQL.

To operate MySQL on your system, ensure that the following prerequisites are met:

To set up MySQL on your system, make sure you have the following components installed:
1. MySQL Setup Software

2. Microsoft .NET Framework 4.5.2

3. Microsoft Visual C++ Redistributable for Visual Studio 2019

4. Minimum 4 GB RAM (6 GB recommended)

Steps to Download My SQL

STEP 1. Go to the official website of MySQL and download the community server edition
software. Here, you will see the option to choose the Operating System, such as Windows. As
shown in Figure 2.2.

STEP 2. Following that, there are two options to download the setup. Select the version number
for the MySQL community server based on your preference. If you have a stable internet
connection, opt for mysql-installer-web-community. Otherwise, choose the alternative option.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII a

General Availability (GA) Releases Archives V4

MySQL Installer 8.0.19

Select Operating System: Looking for previous GA
v ?
Microsoft Windows v il
Windows (x86, 32-bit), MSI Installer 8.0.19 18.6M
(mysgl-installer-web-community-8.0.19.0.msi) MD5: 320843776cb2239db4a5fadaad6dcBacbl | Signature
Windows (x86, 32-bit), MS! Installer 8.0.19 398.9M
(mysgi-installer-community-8.0.19.0.msi) MD5: 12882015327 f093€20c4717e6306817¢c | Signature

Fig. 2.2. MySQL Installer
Installing MySQL on Windows

Step 1. Upon downloading the setup, extract it to any location, and then double-click the MSI
installer .exe file. This action will display the following screen as shown in Figure 2.3.

MySQL Installer - Community

&[] Please wait while Windows configures MySQL Installer - Community
155

Fig. 2.3. Installing MySQL on Windows

Step 2. In the following wizard, where you will be prompted to select the Setup Type. Various
options are available, and it is essential to pick the suitable one for installing MySQL product
and features. For our installation, opt for the Full configuration and then proceed by clicking
the Next button. As shown in Figure 2.4.

[T) MySQL Installer - x

TN

MySQL. Installer Choosing a Setup Type

Adding Community

Please select the Setup Type that suits your use case.

O Developer Default
nstalls all products needed for
MySQL development purposes

O Server only
nstalls only the MySQL Server
product

much more

O Cient only
nstalls only the MySQL Client
products, without a server

@ Full
nstalls all included MySQL
products and features

O Custom

Manuslly select the products that
should be installed on the
system

Cance
Fig. 2.4: MySQL installer setup

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Choosing this option entails the installation of the following components: MySQL Server, MySQL
Shell, MySQL Router, MySQL Workbench, MySQL Connectors, documentation, samples,
examples, and additional features.

STEP 3. After clicking the Next button, you may receive information about certain features that
could fail to install due to insufficient system requirements. To address this, you can either click
the Execute button, which automatically installs all necessary requirements, or choose to skip
them. Proceed by clicking the Next button afterward as shown in Figure 2.5.

[T MySQL Installer - x

 \

MySQL. Installer Check Requirements

Adding Community

The following products have failing requirements. MySQL Installer will attempt to resolve
them automatically. Requirements marked as manual cannot be resolved automatically. Click
on each item to try and resolve it manually.

heck R < For Product Requirement Status
Check Requirements B
) MySQL For Excel 1.3.8 Visual Studio 2010 Tools for Office R..
L MySQL for Visual Studic 1.2.9 Visual Studio version 2015, 2017 or 2... Manual
O Connector/Python 8.0.19 Pythen (64-bit) is not installed Manual

< Back Execute Next >
Fig. 2.5. MySQL Check Requirements

STEP 4. In the succeeding wizard, a dialog box will prompt us to confirm the exclusion of certain
products from the installation. To proceed, simply click the Yes button as shown in Figure 2.6.

MySQL Installer X
(Y.\\ I One or more product requirements have not been satisified
i Those products with missing requirements will not be installed or upgraded.
—

Do you want to continue?

No
Fig. 2.6. Succeeding wizard

Upon selecting the Yes button, a list of the products scheduled for installation will be presented.
To proceed with the installation of all products, click on the Execute button. As shown in Figure
2.7.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII m

7] MySQL Installer - > 4

R
MySQL. Installer Installation

Adding Community

The following products will be installed.

Product Status Progress Naotes
[E] mysaL servers.0.19 Ready to Install
[£5] mysaL workbench 8.0.19 Ready to instsll
[E.] mysaL Notifier 1.1.8 Ready 1o Install
[£] mysaL shenso.10 Ready to install
[E] mysaL routers.0.19 Ready o install
Connector/ODSC 8.0.19 Ready to install
B Connector/C++ 8.0.19 Ready to install
E] Connector/) 8.0.19 Ready to Install
[£7] connectommETs.0.10 Ready to install
E] MySQL Documentation 8.0.19 Ready to install
E] Samples and Examples 8.0.19 Ready to install

Click [Execute] to install the following packages.

T e
Fig. 2.7: Execute button
STEP 5. Upon clicking the Execute button, it will initiate the download and installation process
for all the products. Once the installation is complete, proceed by clicking the Next button. As
shown in Figure 2.8.

[Z] MysQL Installer - %
MySQL. Installer Installation
Adding Community
The following products will be installed.
Product Status Progress Notes
@[] mysaL serverso.19 Comglete
(<] MySQL Workbench 8.0.19 Complete
@[] mysaL Notifier 1.1.8 Complete
) MySQL Shell 8.0.19 Complete
@ [2] mysaLrouters.0.19 Complete
@ [[7] connectorropsc s.0.19 Complete
(] [E] Connector/C++ 8.0.19 Comgplete
@[] connectorss0.19 Complete
(<) E] Connector/NET 8.0.19 Comglete
] [3 MySQL Documentation 8.0.19 Comglete
@ B Samples and Examples 8.0.19 Complete
Show Details >
< Back __rgm > Cancel

Fig. 2.8. Installation process

STEP 6. In the following wizard, it's necessary to configure the MySQL Server and Router. Since
there's no need to use the Router with MySQL in this case, we'll focus solely on configuring the
server. Proceed by clicking the Next button as shown in Figure 2.9.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

[T] MySQL Installer

\

MySQL}. Installer Product Configuration

Adding Community

We'll now walk through a configuration wizard for each of the following products.

You can cancel at any point if you wish to leave this wizard without configuring all the

products.
Product Status
MySQL Server 80.19 Reagy to configure
MySQL Router 8019 Ready to configure
Samples and Examples 8019 Ready to configure
< >

e

Fig. 2.9. Product Configuration

STEP 7. Upon clicking the Next button, the screen below will be visible. To configure the MySQL
Server, select the Standalone MySQL Server/Classic MySQL Replication option and proceed by
clicking Next. Alternatively, based on your requirements, you can also opt for the InnoDB Cluster.

As shown in Figure 2.10.
=] MySQL Installer

7.:\'
MySQL. Installer High Availability
MySQL Server 8.0.19 @ Standalone MySQL Server / Classic MySQL Replication

Choaose this option to run the MySCQL instance as a standalone database server with the
opportunity to configure dassic replication later. With thus option, you ¢an provide your own
nigh-availabilty seolution, if required.

High Availability
O InnoDB Cluster
The InnoDB cluster technology provides an out-of-the-box high availability (HA) solution for
MySQL using Group Replication

2 g
Sisarsrer TN
j . S —— —
[Ciient pp T MysaL router Ry
-_

Note: [on < requires a minimum of three MySQL server instances to provide a

fully automated HA solution. Members of a cluster should be located such that network

communication latency between servers is low

Cance

Fig. 2.10. MySQL Replication option

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

STEP 8. In the subsequent screen, you'll be prompted to choose the Config Type and other
connectivity options. Opt for 'Development Machine' as the Config Type and select TCP/IP as the
Connectivity, with the Port Number set to 3306. Click Next to proceed. As shown in Figure 2.11.

[Z] MysQL installer -— X
7,-__
MySQL. Installer Type and Networking
MySQL Server 8.0.19 Server Configuration Type

Choose the correct server configuration type for this MySQL Server installation. This setting wall
define how much system resources are assigned to the MySQL Server instance

Config Type: [Development Computer v]
Type and Networking Connectivity
Use the following contrels to select how you would like to connect to this server.
& Tcpne Port: |3306 X Pretocol Port: [33060 |

[~ Open Windows Firewall ports for network access
[[] Named Pipe Pipe Name: MYSQL

[C] Shared Memory Memory Name: MYSQOL

Advanced Configuration

Select the check box below to get additional configuration pages where you can set advanced
and logging options for thes server instance.

[C] Show Advanced and Logging Options

T Gonc

Fig. 2.10. TCP/IP Networking

STEP 9. Choose the Authentication Method and proceed by clicking Next. In this case, I will select
the first option as shown in Figure 2.12.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII 41

[E] mysaL installer — <

W\
MySQL. Installer Authentication Method
MySQL Server 8.0.19

@ Use Strong Password Encryption for Authentication (RECOMMENDED)

MySQL 8 supports a new authentication based on improved stronger SHA256-based password
methods. It is recommended that all new MySQOL Server installations use this method going
forward,

connectors and clients which add support for this new 8.0 default authentication

Attention: This new authentication plugin on the server side requires new versions of
A (caching_sha2_password authentication).

Authentication Method

Currently MySQL 8.0 Connectors and community drivers which use libmysgiclient 8.0 support
this new method. If chients and apphcations cannot be updated to support this new
authentication method, the MySQL 8.0 Server can be configured to use the legacy MySCL
Authentication Method below.

(O Use Legacy Authentication Method (Retain MySQL Sx Compatibility)

Using the old MySQL 5.x legacy authentication method should only be considered in the
following cases:

- If applications cannot be updated to use MySQL 8 enabled Connectors and drivers.

- For cases where re-compilation of an existing application is not feasible.

- An updated, language specific connector or driver is not yet available.

Security Guidance: When possible, we highly recommend taking needed steps towards

upgrading your applications, libraries, and database servers to the new stronger authentication.
This new method will significantly improve your securnty.

= e

Fig. 2.12. Authentication Method

STEP 10. On the subsequent screen, you'll be required to provide the MySQL Root Password.
Once you've entered the password details, proceed by clicking the Next button. As shown in Figure
2.13.

[T MySQL Installer - x
MySQL. Installer Accounts and Roles
MySQL Server 8.0.19 Riot Accoont Dassevaid
Enter the password for the root account. Please remember to store this password in a secure
place.

MySQL Root P. &

Repeat Password: ssssssssssssse

Password strengthc Strong

Accounts and Roles

MySQL User Accounts

Create MySQL user accounts for your users and applications. Assign a role to the user that
conssts of a set of privileges.

MySQL User Name Host User Role Add User

< Back | Next > Cancel

Fig. 2.13. MySQL Root Password

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

STEP 11. On the following screen, you will be prompted to configure the Windows Service to
initiate the server. Maintain the default setup and proceed by clicking the Next button as shown
in Figure 2.14.

[Z] mysQL Installer - b s

‘\
MySQL. Installer Windows Service

MySQL Server 8.0.19

[4 Configure MySQL Server as a Windows Service

Windows Service Details

Please specify a3 Windows Service name to be used for this MySQL Server instance
A unique name is required for each instance.

Windows Service Name: lMySQLSO
EA Start the MySQL Server at System Startup

Run Windows Service as ...
The MySQL Server needs to run under a given user account. Based on the security
requirements of your system you need to pick one of the options below.

@ Standard System Account

Recommended for most scenarios.

O Custom User

An existing user account can be selected for advanced scenarios.

| [bews

Fig. 2.14. Windows Service

STEP 12. In the subsequent wizard, the system will prompt you to apply the Server Configuration.
If you are in agreement with this configuration, proceed by clicking the Execute button. As shown
in Figure 2.15.

[T MySQL Installer - X

\\‘
MySQL. Installer Apply Configuration
MySQL Server 8.0.19 Click [Execute] to apply the changes
Configuration Steps Log

O Wiriting configuration file

Updating Windows Firewall rules

O

O

Adjusting Windows service

O Initializing database (may take a long time)
O Starting the server

O Applying security settings

O Updating the Start menu link

Apply Configuration

o o
Fig. 2.15. Server Configuration

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

STEP 13. Upon the completion of the configuration, the screen below will be presented. Proceed
by clicking the Finish button to continue as shown in Figure 2.16.
[Z] mysQL installer = P'e
':-\

MySQL. Installer Apply Configuration
MySQL Server 8.0.19 The configuration operation has completed.

Configuration Steps Log

& Writing configuration file

Q

Updating Windows Firewall rules

Q

Adjusting Windows service
Initializing database (may take a long time)

Starting the server

Q@ @ @

Applying security settings

Q

Updating the Start menu link

The configuration for My5QL Server £.0.19 was successful.
Click Finish to continue.

Einish

Fig. 2.16: Apply configuration
STEP 14. On the following screen, observe that the Product Configuration has been successfully
completed. Maintain the default settings and proceed by clicking the Next->Finish button to
finalize the MySQL package installation as shown in Figure 2.17.
[T MySQL Installer - X

MySQL. Installer Product Configuration

Adding Community
We'll now walk through a configuration wizard for each of the following products.

You can cancel at any point if you wish to leave this wizard without configuring all the

products.
Product Status
MySQL Server 80.19 Confguration complete.
MyEQL Router 8019 Ready to configure
Samples and Examples 8012 Ready to configure
< >

Next > Cancel

Fig. 2.17. Product Configuration

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

STEP 15. In the subsequent wizard, there's an option to configure the Router. Click on Next-
>Finish, and then proceed by clicking the Next button as shown in Figure 2.18.
[T MySQL Installer = x

MySQL. Installer MySQL Router Configuration
MySQL Router 8.0.19 [[] Bootstrap MySQL Router for use with InncDB cluster

This wizard can bootstrap MySQL Router to direct traffic between MySC8 applications and a
MySQL InnoDB cluster. Applications that connect to the router will be automatically derected to
an available read/wnte or read-only member of the cluster.

The boostrapping pro<ess requires a connection 1o the innoDE cluster. In order to register the
MySQL Router for monitonng, use the current Read/ Write instance of the duster

Hostname:
Port: 3310
Management User: root
Password: Test Connection

MySQL Router requires specification of a base port [between 80 and 65532). The first port is used
for classic read/write connections. The other ports are computed seguentially after the first port
i any port is indecated to be in use, please change the base port
Classic MySQL protocol connections to innoDB cluster:

Read/Wnte 6446

Read Only: 6447

MySQL X protocol connections to InnoDB cluster:

Read/Write: 6448

Read Only: 6449

==

Fig. 2.18. Configure the Router

STEP 16. In the upcoming wizard, locate the "Connect to Server" option. Enter the root password
that was set in the preceding steps as shown in Figure 2.19.

[Z] MysQL Installer - X

MySQL. Installer Connect To Server

Samples and Examples

Select the MySQL server instances from the list to receive sample schemas and data
] Show MySQL Server instances that may be running in read-only mode

' Server Port Arch_. Type Status

Bl MySOLServer8019 3306 X64 Stand-alone Server [EORNECHONSUCCESIEN

Provide the credentials that should be used (requires root privileges).
Clhick "Check” to ensure they work,

User name: Iroot l Credentials provided in Server configuration

Password: ’ sssssssssssnns I

Check v

Next > Cancel

Fig. 2.19. Connect to Server

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

On this screen, it is essential to verify the success of the connection by clicking on the Check
button. If the connection is successful, proceed by clicking the Execute button. With the
configuration now complete, click on Next.

STEP 17. In the following wizard, choose the applied configurations, and proceed by clicking the
Execute button. As shown in Figure 2.20.
[T) MySQL Installer - x

\

MySQL. Installer Apply Configuration
Samples and Examples Click [Execute] to apply the changes
Configuration Steps Log

(O Checking if there are any festures installed that need configuration.

O Running Scripts

<saa ==
Fig. 2.20. Applied configurations

STEP 18. Upon finishing the above step, the subsequent screen will appear. Click on the Finish
button to conclude the process as shown in Figure 2.21.

[T MySQL Installer - x

\

MySQL. Installer Apply Configuration
Samples and Examples The configuration operation has completed.
Configuration Steps Log

& Checking if there are any festures installed that need configuration.
& Running Scripts

Apply Configuration

The configuration for Samples and Examples 8.0.19 was successful.
Click Finish to continue.

FEinish

Fig. 2.21. Configuration Finish

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

STEP 19. The MySQL installation is now finished. Proceed by clicking on the Finish button. As
shown in Figure 2.22.
[MySQL Installer = >
B
MySQL. Installer Installation Complete

Adding Community

The installation procedure has been completed.

l Copy Log to Clipboard]

Start MySQL Workbench after Setup
E7] Start MySQL Shel sfter Setup

Einish

Fig. 2.22. MySQL installation finished

Verify My SQL Installation

After successfully installing MySQL, initializing the base tables, and starting the server, you can
verify its functionality through simple tests.

Launch the MySQL Command Line Client; it should be open with a mysql> prompt. If you have
set a password, enter it here. You are now connected to the MySQL server and can execute SQL
commands at the mysql> prompt. For instance, you can check the already created databases
using the show databases command as shown in Figure 2.22.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

mysql-u root-p

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 267

Server version: 10.11.6-MariaDB-Qubuntu®.23.10.2 Ubuntu 23.10

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

{Type 'help;' or '"\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> SHOW DATABASES;

| Database |

| Selection_ DB |
| anjali_db |
| information_schema |
| mysql I
| performance schema |
| phpmyadmin |
| psscive db |
| sys I
R +
8 rows in set (0.013 sec)

MariaDB [(none)]=
Fig. 2.22. Databases Command
2.4. Data Types and Constraints in MySQL

MySQL supports various data types such as INT for integers, VARCHAR for variable-length
strings, DATE for dates, and more. Numeric types like FLOAT and DOUBLE handle decimal
values, while BLOB is used for binary data. Constraints ensure data integrity; PRIMARY KEY
uniquely identifies rows, FOREIGN KEY establishes relationships between tables, UNIQUE
enforces uniqueness, NOT NULL prohibits NULL values, CHECK validates a condition, and
DEFAULT provides a default value. For instance, creating a table “employee” might involve using
INT as a PRIMARY KEY for employee IDs, VARCHAR for names, and FOREIGN KEY to link to
another table, ensuring referential integrity. These data types and constraints help define the
structure and relationships within a MySQL database, ensuring accurate and organized data
storage.

In MySQL, data types are used to define the type of data that can be stored in a column of a table.
Constraints, on the other hand, are rules or conditions that are applied to the data in a table to
maintain the integrity and accuracy of the data. Here is an overview of commonly used data types
and constraints in MySQL:

Data Types: In MySQL, data types play a pivotal role in defining the nature of data that can be
stored in database tables. MySQL supports a diverse range of data types, each designed to
accommodate specific kinds of information efficiently. Common numeric data types in MySQL
include INT for integers, FLOAT and DOUBLE for floating-point numbers, and DECIMAL for
precise decimal arithmetic.

String data types, such as VARCHAR and CHAR, are used for storing character-based
information, while the TEXT type is suitable for longer text content. Date and time-related data

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

types like DATE, TIME, and DATETIME allow for the representation and manipulation of temporal
information.

MySQL also provides spatial data types for handling geometric and geographical data, reinforcing
its versatility in managing various data domains. Choosing the appropriate data type is crucial
for optimizing storage space and query performance, aligning with the principles of database
normalization.

Furthermore, MySQL allows users to define their own data types through user-defined types
(UDTs), contributing to the flexibility and extensibility of the database schema. Overall, a
comprehensive understanding of MySQL data types is vital for database designers and developers
to create efficient, well-organized, and robust databases that cater to specific application needs.

Numeric Types: In MySQL, numeric types are essential for storing numerical data efficiently.
Common numeric types include INT for integers, allowing the storage of whole numbers, and
DECIMAL for precise decimal arithmetic. FLOAT and DOUBLE accommodate floating-point
numbers, representing values with decimal fractions. These numeric types enable the database
to manage various numerical data with appropriate storage sizes and precision. Choosing the
right numeric type is crucial for optimizing storage space, ensuring accurate representation of
values, and maintaining computational integrity in MySQL databases.

INT: Integer type, for whole numbers.

In MySQL, "INT" refers to the integer data type, a fundamental component for storing whole
numbers. As a fixed-size numeric type, INT accommodates a range of values, from -2147483648
to 2147483647 for signed integers and O to 4294967295 for unsigned integers. Widely used for
representing discrete numerical values, such as IDs, counts, or indexes, INT optimizes storage
and retrieval efficiency. Its simplicity and efficiency make it a preferred choice for scenarios where
precise numeric values without decimal points are essential. The INT data type underscores
MySQL's commitment to providing versatile and performance-oriented solutions for database
management.

FLOAT: Floating-point type, for numbers with decimal points.

In MySQL, "FLOAT" denotes a floating-point numeric data type, designed for storing approximate
decimal values. This versatile type is ideal for numbers requiring a fractional component,
accommodating a wide range of values. FLOAT enables efficient representation of real-world
measurements or calculations, offering flexibility with varying precision levels. Its storage capacity
and dynamic range make it suitable for scenarios where exact precision is less critical, such as
scientific measurements or financial approximations. However, due to potential rounding errors
inherent in floating-point arithmetic, users should consider the specific needs of their application
when opting for FLOAT in MySQL database designs.

DOUBLE: Double-precision floating-point type.

In MySQL, "DOUBLE" represents a floating-point numeric data type that offers increased
precision compared to FLOAT. Suitable for storing decimal numbers with a wide range and higher
accuracy, DOUBLE is valuable in scenarios where precision is crucial, such as scientific
calculations or financial applications. It accommodates a vast spectrum of numerical values,
making it suitable for diverse data sets. While providing greater precision, DOUBLE also
consumes more storage space than FLOAT. Database designers in MySQL often opt for DOUBLE
when stringent accuracy requirements are essential, balancing the need for precision with
considerations for storage efficiency in complex numerical computations.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

DECIMAL: Fixed-point type, for exact numeric values.

In MySQL, "DECIMAL" is a fixed-point numeric data type designed for accurate representation of
decimal numbers. Unlike floating-point types, DECIMAL stores numbers with exact precision,
making it suitable for financial calculations or applications requiring meticulous accuracy. Users
define the scale (number of digits to the right of the decimal point) and precision (total number of
digits) for DECIMAL columns, ensuring predictable and precise storage. This data type is preferred
when rounding errors must be minimized, maintaining integrity in scenarios such as currency
handling or critical numerical computations. While DECIMAL requires more storage, its emphasis
on accuracy makes it invaluable for specific use cases in MySQL databases.

String Types: In MySQL, "String Types" encompass various data types designed for storing
character-based data. Common ones include CHAR, VARCHAR, TEXT, and BLOB. CHAR and
VARCHAR differ in that CHAR stores fixed-length strings, while VARCHAR stores variable-length
strings, optimizing storage based on content. TEXT accommodates larger variable-length
character data, suitable for extensive textual information. BLOB (Binary Large Object) handles
binary data, such as images or multimedia files. These string types cater to diverse storage needs,
balancing efficiency with flexibility. Whether for concise codes (CHAR), adaptable text content
(VARCHAR, TEXT), or binary data (BLOB), MySQL's String Types offer versatility in managing
character-based information.

CHAR: Fixed-length character string.

"CHAR" stands for character and represents a fixed-length string data type. It stores strings with
a predetermined length, making it efficient for uniform data, such as codes or abbreviations.
CHAR columns occupy space based on the defined length, ensuring consistent storage regardless
of the actual content length. While suitable for static data, it may lead to wasted space for variable-
length strings. CHAR is commonly used when the length of the data is known and remains
constant, optimizing retrieval speed due to its fixed-size nature. Its predictable behavior makes it
valuable for specific applications in MySQL databases.

VARCHAR: Variable-length character string.

In MySQL, "VARCHAR" refers to a variable-length character data type, ideal for storing dynamic
strings. Unlike CHAR, VARCHAR optimizes storage by only using space proportional to the actual
content length, accommodating varying data sizes efficiently. This makes it suitable for fields with
unpredictable lengths, such as names or addresses. The maximum length for VARCHAR is
specified during column definition, allowing users to balance storage requirements and data
flexibility. Widely used in database design, VARCHAR is a versatile choice, offering a pragmatic
approach to managing character-based information in MySQL, particularly when adaptability to
changing content lengths is essential.

TEXT: Variable-length text string.

In MySQL, "TEXT" represents a character data type designed for handling large amounts of
variable-length textual information. It is suitable for storing extensive content, such as
paragraphs or documents, where the length is unpredictable. TEXT columns provide flexibility by
dynamically allocating storage based on the actual content length, making it efficient for
managing diverse textual data. While offering substantial capacity, TEXT is distinct from
VARCHAR in terms of storage optimization, as it is intended for longer, potentially multi-page
text. Widely used in applications requiring the storage of sizable textual data, TEXT is a valuable
choice within MySQL database designs.

Date and Time Types: In MySQL, "Date and Time Types" encompass a range of data types
designed to handle temporal information efficiently. Common types include DATE, TIME,

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII “

DATETIME, TIMESTAMP, and YEAR. DATE stores only the date without the time, TIME stores
the time of day, DATETIME combines both date and time, while TIMESTAMP records a timestamp
with automatic update features. YEAR represents a four-digit year value. These types enable
accurate storage and retrieval of temporal data, crucial in applications dealing with scheduling,
logging, or time-sensitive information. MySQL's Date and Time Types provide versatility and
precision for managing various aspects of temporal information within databases.

DATE: Date value in 'YYYY-MM-DD' format.

In MySQL, "DATE" is a date-only data type used for storing calendar dates without the associated
time component. It is well-suited for scenarios where recording specific dates, such as birthdays
or event dates, is essential without the need for tracking hours and minutes. The DATE type
supports a range of dates from '1000-01-01" to '9999-12-31". Its simplicity and focus on the date
make it efficient for data-centric applications, offering clarity and ease of use. Whether managing
appointments, historical records, or any time-sensitive data where time precision is not required,
the DATE data type in MySQL provides a streamlined solution for date storage.

TIME: Time value in 'HH:MM:SS' format.

In MySQL, "TIME" is a data type designed specifically for storing time-of-day information without
a corresponding date. It represents a duration in hours, minutes, seconds, and fractions of a
second. TIME is valuable when dealing with events, schedules, or processes where tracking
elapsed time is crucial. The format for TIME includes hours, minutes, seconds, and microseconds,
accommodating precision in time measurements. MySQL supports a range from '-
838:59:59.000000' to '838:59:59.000000' for TIME values. This data type enables efficient storage
and retrieval of time-related information, enhancing the database's capability to manage and

analyze temporal aspects in various applications
DATETIME: Combination of date and time in 'YYYY-MM-DD HH:MM:SS' format.

In MySQL, "DATETIME" is a versatile date and time data type that combines both components to
represent a specific point in time. It includes the date (year, month, day) and the time (hour,
minute, second), allowing precise recording of events. DATETIME supports a wide range of values
from '1000-01-01 00:00:00.000000' to '9999-12-31 23:59:59.999999'. This data type is
commonly used for scenarios requiring detailed timestamp information, such as logging events or
tracking the creation/modification times of records. DATETIME provides a comprehensive
solution for managing temporal data, offering flexibility and accuracy for a variety of applications
within the MySQL database environment.

TIMESTAMP: Similar to DATETIME but stores time in UTC.

In MySQL, "TIMESTAMP" is a date and time data type used to record a point in time, similar to
DATETIME. However, TIMESTAMP has an additional feature—it automatically updates to the
current timestamp whenever the associated row is inserted or updated. This automatic updating
behavior makes TIMESTAMP especially useful for tracking changes and ensuring accurate
temporal information.

MySQL TIMESTAMP values range from '1970-01-01 00:00:01.000000' to '2038-01-19
03:14:07.999999', making it suitable for various applications. Its ability to reflect changes
dynamically simplifies tasks like logging modifications or monitoring the last update time in a
database, enhancing data accuracy and management efficiency.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Binary Types:
BINARY: Fixed-length binary string.

"BINARY" refers to a data type designed for storing binary data as fixed-length strings. Unlike
other character data types, BINARY treats the data as binary, meaning that comparisons are case-
sensitive and collations do not affect the sorting or comparison order. The BINARY data type is
particularly useful in scenarios where precise byte-by-byte comparisons are crucial, such as in
cryptographic applications or when dealing with binary-encoded values. It is important to note
that BINARY has a fixed length, and when defining a BINARY column, the length must be specified
to ensure consistent storage. This data type provides a strict and efficient means for handling
binary data in MySQL databases.

VARBINARY: Variable-length binary string.

In MySQL, "VARBINARY" is a variable-length binary data type designed for storing binary data in
a flexible manner. Unlike the fixed-length BINARY type, VARBINARY optimizes storage by only
using the space required for the actual content, accommodating varying data sizes. This makes
VARBINARY suitable for scenarios where the length of the binary data may differ.

VARBINARY is commonly used for handling smaller binary data sets, offering efficiency and
adaptability. It is well-suited for applications where the size of the binary content is not
predetermined, allowing for more dynamic storage and retrieval of binary data. VARBINARY
provides a versatile solution within MySQL databases for managing variable-length binary
information.

BLOB: Binary large object for storing large amounts of binary data.

"BLOB" (Binary Large Object) is a data type tailored for storing extensive binary data, such as
images, audio, or video files. Offering variable lengths, BLOB accommodates diverse data sizes
efficiently. This type is ideal for applications demanding large-capacity storage and versatility in
handling unstructured binary content. Whether managing multimedia files or any binary data
without specific character encoding, MySQL's BLOB provides a flexible solution. Its capacity to
handle variable and substantial binary content makes it a vital choice for applications requiring
efficient storage and retrieval of diverse and sizable binary data within the database.

Miscellaneous Types:
ENUM: Enumeration type with a predefined set of values.

"ENUM" (Enumerated) is a data type used for defining a set of permissible values within a column.
It allows users to specify a list of predefined values, and each column of the ENUM type can only
store one of these values. ENUM is useful for representing categorical data with distinct, limited
options, like status indicators or specific types. Its compact representation enhances storage
efficiency, and the predefined nature ensures data integrity. While ENUM offers simplicity and
clarity in representing fixed sets of options, it's essential to consider potential limitations, such
as challenges in modifying or expanding the enumerated values.

SET: Set type with a dynamic set of values.

"SET" is a data type designed to store a collection of distinct values chosen from a predefined list.
It allows users to select multiple values from a set of options, making it suitable for scenarios
where a column can have multiple attributes or categories. SET provides a compact
representation of multiple choices within a single column, optimizing storage. However, its use is
best suited for situations where the number of possible values is relatively small and fixed, as
modifying or expanding the set of options can be complex. SET offers a versatile solution for
managing multiple selections within a single database column.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

Assignment 2.1. List and identify different datatypes in SQL.

Constraints:

"Constraints" are rules applied to database tables to maintain data accuracy and integrity.
Primary Key constraints ensure unique identification, Foreign Key constraints establish
relationships between tables, Unique constraints prevent duplicate values, and Check constraints
enforce specific conditions on data. Constraints play a vital role in safeguarding the reliability of
MySQL databases by preventing inconsistencies and errors, supporting data relationships, and
ensuring adherence to predefined criteria. They contribute to the overall robustness and
dependability of the database structure, guiding the organization and behavior of data within
MySQL tables.

PRIMARY KEY

"PRIMARY KEY" is a fundamental constraint defining a unique identifier for each record in a table.
It ensures data integrity by prohibiting duplicate entries and serving as a reference point for
relationships with other tables. Typically applied to a column, often with auto-increment,
PRIMARY KEY uniquely identifies each row. Its efficiency lies in optimizing data retrieval and
supporting efficient indexing. The PRIMARY KEY constraint is fundamental to relational database
design, enhancing search performance and fostering coherent data organization within MySQL
tables. Uniquely identifies each record in a table. No duplicate values are allowed as shown in
Figure 2.23.

o0 e -+

CREATE TABLE example (
id INT PRIMARY KEY,
same VARCHAR(5®)

);

Fig. 2.23: PRIMARY KEY
FOREIGN KEY

A "FOREIGN KEY" is a crucial constraint establishing links between tables based on relationships.
It references a column or a set of columns in one table to the primary key in another, enforcing
referential integrity. This ensures that values in the foreign key match those in the referenced
primary key, facilitating data consistency across related tables. FOREIGN KEY constraints play a
pivotal role in maintaining data relationships, supporting cascading updates and deletes, and
enhancing the relational structure of MySQL databases. They are vital for establishing and
preserving the integrity of connections between different tables in a database schema. Establishes
a link between two tables based on a column. Ensures referential integrity as shown in Figure
2.24.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII a

00 +

CREATE TABLE orders (
order_id INT PRIMARY KEY,
product_id INT,
| FOREIGN KEY (product_id) REFERNECES products(product_id)
);

Fig. 2.24: FOREIGN KEY
UNIQUE

"UNIQUE" is a constraint ensuring that values in a specified column or a combination of columns
are distinct across rows in a table. It prevents duplicate entries, contributing to data integrity by
enforcing uniqueness. The UNIQUE constraint is valuable for fields requiring distinct values, like
usernames or email addresses, and it supports efficient indexing. By restricting duplicate content,
UNIQUE enhances the reliability of data retrieval and facilitates the maintenance of organized
and accurate information within MySQL tables, making it a key element in database design to
ensure the uniqueness and consistency of critical data points. Ensures that all values in a column
are unique as shown in Figure 2.25.

o0 e -+

CREATE TABLE employees (
employee_id INT UNIQUE,
name VARCHAR(50)

);

Fig. 2.25: UNIQUE
NOT NULL

"NOT NULL" is a constraint that ensures a specified column cannot contain NULL values,
enforcing data integrity by requiring the presence of valid data. When applied to a column, it
mandates that every entry must have a value, preventing the insertion of missing or undefined
data. The NOT NULL constraint is fundamental in maintaining the accuracy and reliability of
MySQL databases by guaranteeing essential information is consistently provided. This constraint
is commonly used for columns that should always contain meaningful data, contributing to the
overall robustness and dependability of the database structure. Ensures that a column cannot
have NULL values as shown in Figure 2.26.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

ove -+

CREATE TABLE customers (
customer_id INT PRIMARY KEY,
name VARCHAR(5®) NOT NULL

);

Fig. 2.26: NOT NULL
CHECK

The "CHECK" constraint allows users to define specific conditions that data in a column must
meet. Although MySQL itself doesn't enforce the CHECK constraint directly, it provides a
mechanism for declaring conditions using the CHECK keyword during table creation. This
constraint ensures that values entered into a column satisfy predetermined criteria, promoting
data accuracy and consistency. While not as commonly used in MySQL as in some other database
systems, the CHECK constraint offers a flexible option for developers to establish custom business
rules and data validation, enhancing the overall integrity of the database schema as shown in
Figure 2.27. Enforces a condition that must be true for all rows.

oce -+

CREATE TABLE products (
product_id INT PRIMARY KEY,
price DECIMAL CHECK (price > 8)
)il

Fig. 2.27: CHECK
DEFAULT

"DEFAULT" is a keyword used to assign a default value to a column if no explicit value is specified
during insertion. This constraint ensures that a predefined value is used when a new record is
added to the table, preventing the insertion of NULL or undefined data. DEFAULT is valuable for
maintaining consistency and simplifying data input. It is commonly applied to columns where a
specific, commonly used value is expected but allows for overrides when necessary. This
constraint streamlines data entry and contributes to the overall stability and coherence of MySQL
databases by providing default values for columns as shown in Figure 2.28. Provides a default
value for a column if none is specified.

ove 1

CERATE TABLE students (

student_id INT PRIMARY KEY,

status VARCHAR(1®) DEFAULT 'active'
)5l

Fig. 2.28: DEFAULT

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII B

Assignment 2.2: List and identify various constraints in data table.

2.5. Types of SQL

SQL (Structured Query Language) encompasses various types of statements designed for
interacting with relational databases. Data Query Language (DQL) includes the SELECT
statement, which retrieves data from tables based on specified conditions. Data Definition
Language (DDL) statements like CREATE, ALTER, and DROP are used for defining and managing
database structures, allowing the creation, modification, and deletion of tables, indexes, and other
objects. Data Manipulation Language (DML) involves INSERT, UPDATE, and DELETE statements
for adding, modifying, and removing data within tables.

Data Control Language (DCL) statements, such as GRANT and REVOKE, control user access and
permissions, determining who can perform specific actions on database objects. Transaction
Control Language (TCL) includes COMMIT and ROLLBACK statements, ensuring the consistency
and integrity of transactions.

Together, these SQL types provide a comprehensive set of tools for developers and database
administrators to interact with and manage relational databases efficiently, offering a
standardized approach to database operations across different systems and platforms.

SQL (Structured Query Language) is a standard programming language for managing and
manipulating relational databases. There are several types of SQL statements that can be
categorized based on their functionality:

Data Query Language (DQL):

Data Query Language (DQL) is a specialized language designed for retrieving and manipulating
data stored in a database. Unlike other SQL languages that encompass various operations, DQL
specifically focuses on querying data. It enables users to retrieve information based on specified
criteria, making it a crucial component in database management systems. DQL statements
typically involve SELECT queries, allowing users to extract data from tables or views. These
queries can be tailored to filter, sort, and aggregate data, providing a flexible and powerful tool for
data retrieval. DQL plays a fundamental role in accessing and extracting relevant information
from databases, supporting efficient decision-making processes and facilitating data-driven
insights for businesses and applications.

SELECT: Retrieves data from one or more tables. It is used to query the database for information
as shown in Figure 2.29.

ove -+

SELECT columnl, column2z
FROM table
WHERE condition;

Fig. 2.29: SELECT
Data Definition Language (DDL):

Data Definition Language (DDL) is a specialized subset of SQL (Structured Query Language) that
focuses on defining and managing the structure of a database. DDL statements are crucial for
database administrators and developers to create, modify, and delete database objects, such as

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII B

tables, indexes, and constraints. One of the primary tasks of DDL is to establish the schema or
blueprint of the database, outlining its organization and relationships.

DDL includes commands like CREATE, ALTER, and DROP. The CREATE statement is used to
build new database objects, specifying details like data types and constraints. ALTER allows
modification of existing structures, while DROP removes objects from the database. DDL
statements are pivotal in ensuring data integrity, defining relationships between tables, and
establishing constraints to enforce business rules.

Database changes initiated through DDL statements are permanent and have a significant impact
on the overall data architecture. DDL plays a crucial role in database management, enabling the
efficient creation, modification, and organization of data structures, thereby providing a
foundation for robust and well-organized database systems.

CREATE: Used to create database objects such as tables, indexes, or views as shown in Figure
2.30.

ove -+

CREATE TABLE table_name (columnl datatype, column2 datatype, ...);

Fig. 2.30: CREATE
ALTER: Modifies the structure of an existing database object as shown in Figure 2.31.

o0 e -+

ALTER TABLE table_name ADD column_name datatype;

Fig. 2.31: ALTER
DROP: Deletes a database object like a table or index as shown in Figure 2.32.

o0 e |

DROP TABLE table_name;|

Fig. 2.32: DROP
Data Manipulation Language (DML):

Data Manipulation Language (DML) is a subset of SQL (Structured Query Language) designed to
interact with and manipulate data stored in a database. Unlike Data Definition Language (DDL),
which focuses on defining the structure of a database, DML is concerned with the actual
manipulation and retrieval of data within existing structures. DML commands primarily include
SELECT, INSERT, UPDATE, and DELETE.

SELECT: The SELECT statement is essential for querying and retrieving specific data from one or
more tables, allowing users to filter, sort, and aggregate information based on specified criteria as
shown in Figure 2.33.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

eve +

SELECT columnl, column2,
FROM table_name;

Fig. 2.33: SELECT
INSERT: Adds new records to a table as shown in Figure 2.34.

ove -+
INSERT INTO table_name (columnl, column2, ...)
VALUES (valuel, value2, ...}ﬂ

Fig. 2.34: INSERT
UPDATE: Modifies existing records in a table as shown in Figure 2.35.

o0 e

UPDATE table_name SET columnl = valuel
WHERE condition;

Fig. 2.35: UPDATE
DELETE: Removes records from a table as shown in Figure 2.36.

00

DELETE FROM table_name WHERE condition;

Fig. 2.36: DELETE

Data Control Language (DCL): Data Control Language (DCL) is a specialized subset of SQL
(Structured Query Language) responsible for controlling access to data within a database
management system. DCL comprises commands that manage user privileges, permissions, and
security, ensuring that data is accessed and modified only by authorized individuals or roles. Two
primary DCL commands are GRANT and REVOKE.

GRANT: Provides specific privileges to database users as shown in Figure 2.37.

o0 e

GRANT priviledge(s) ON object TO user;

Fig. 2.37: GRANT

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

REVOKE: Removes specific privileges from database users as shown in Figure 2.38.

*ove +

REVOKE priviledge(s) ON object FROM user;

Fig. 2.38: REVOKE

Transaction Control Language (TCL): Transaction Control Language (TCL) is a subset of SQL
(Structured Query Language) that manages the transactions within a database management
system. Transactions are sequences of one or more SQL statements that are executed as a single
unit of work, ensuring data consistency and integrity. TCL commands include COMMIT,
ROLLBACK, and SAVEPOINT.

COMMIT: Saves all changes made during the current transaction as shown in Figure 2.39.

e e 1

COMMIT;|

Fig. 2.39: COMMIT

ROLLBACK: Undoes changes made during the current transaction as shown in Figure 2.40.

ece -+

ROLLBACK;

Fig. 2.40: ROLLBACK

Practical Activity 2.1. Use DDL commands to create Database, Table, View.
Material Required
Laptop/Desktop, Mysql, Internet
Steps:
-- Creating a Database
CREATE DATABASE ExampleDatabase;
-- Using the created database
USE ExampleDatabase;
-- Creating a Table named Employees
CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,
FirstName VARCHAR(50),
LastNameVARCHAR(50),
Department VARCHAR(S0),
Salary DECIMAL(10, 2)

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

);

-- Inserting some sample data into the Employees table

INSERT INTO Employees (EmployeelD, FirstName, LastName, Department, Salary)
VALUES (1, 'John', 'Doe’, 'HR', 50000,

(2, 'Jane', 'Smith’, 'IT", 60000),

(3, 'Alice', 'Johnson', 'Finance', 70000),

(4, 'Bob', 'Williams', 'Marketing', 55000),

(5, 'Emily', 'Brown', 'Sales', 65000);

-- Creating a View named HighPaidEmployees
CREATE VIEW HighPaidEmployees AS

SELECT EmployeelD, FirstName, LastName, Salary
FROM Employees

WHERE Salary > 60000;

2.6. Data Definition Language (DDL) Command

Data Definition Language (DDL) in SQL is a subset of commands focused on defining and
managing the structure of a relational database. DDL statements facilitate the creation, alteration,
and deletion of database objects, playing a crucial role in establishing the schema and ensuring
data integrity. The CREATE statement is used to build new objects like tables, specifying their
columns, data types, and constraints. The ALTER statement modifies existing objects, enabling
actions such as adding or dropping columns. Conversely, the DROP statement removes objects
like tables or indexes. DDL also includes the TRUNCATE statement, which removes all records
from a table while preserving its structure, and the RENAME statement, which changes the name
of an existing object.

DDL statements are responsible for creating, altering, and deleting database objects. The primary
DDL statements include:

CREATE

"CREATE" is a fundamental SQL (Structured Query Language) command used for defining and
building database objects. The "CREATE" statement allows users to create various database
entities such as tables, indexes, views, and procedures. The syntax and functionality of the
"CREATE" command may vary depending on the specific database management system being
used, but its primary purpose remains consistent across platforms.

For example, the "CREATE TABLE" statement is used to define a new table within a database,
specifying the columns, data types, and constraints that govern the structure of the table. This is
a crucial step in organizing and storing data efficiently.

Similarly, the "CREATE INDEX" statement is employed to create an index on one or more columns
of a table, enhancing the speed of data retrieval operations.

Beyond tables and indexes, "CREATE" commands are used for various other database objects.
For instance, "CREATE VIEW" is used to create a virtual table based on the result of a SELECT
query, providing a way to simplify complex queries or present specific data perspectives.

In summary, the "CREATE" command is a powerful tool in database management, enabling the
definition and instantiation of diverse database objects essential for organizing, accessing, and
manipulating data efficiently.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

Syntax: CREATE [object_type] [object_name]| [object_definition];

Creates a new database object, such as a table, index, or view, as shown in Figure 2.41.

o0 e 1

CREATE TABLE employees (
emp_id INT PRIMARY KEY,
emp_name VARCHAR(5@),
emp_salary DECIMAL(1@, 2)

);

Fig. 2.41: CREATE
ALTER
The "ALTER" statement in SQL (Structured Query Language) is a powerful command used to
modify the structure of existing database objects. Its primary purpose is to alter the
characteristics of tables, views, indexes, or other database entities without requiring their

complete recreation. The "ALTER" command provides a flexible way to adapt the database schema
to evolving requirements.

For example, the "ALTER TABLE" statement allows users to add, modify, or drop columns in an
existing table. This is crucial for accommodating changes in data requirements, business rules,
or application needs without the need to recreate the entire table.

Similarly, the "ALTER INDEX" statement can be used to modify the properties of an existing index,
such as adding or removing columns from the index.

The "ALTER VIEW" statement allows users to modify the definition of a view, enabling adjustments
to the underlying query without recreating the entire view.

The versatility of the "ALTER" command makes it an essential tool in database maintenance and
evolution. It provides a means to make adjustments to the database structure while preserving
existing data, ensuring that the database remains adaptable to changing business conditions and
application demands.

Syntax: ALTER [object_type] [object_name] [alteration_definition];

Modifies the structure of an existing database object, like adding or dropping columns as shown
in Figure 2.42.

eve -+

ALTER TABLE employees
ADD COLUMN emp_age INT;|

Fig. 2.42: ALTER

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Practical Activity 2.2. Use Altercommand to modify table structure.

Material Required
Laptop/Desktop, Mysql, Internet
Steps:

Adding a new column:

ALTER TABLE Employees

ADD Email VARCHAR (100);
Dropping a column:

ALTER TABLE Employees

DROP COLUMN Department;
Modifying a column's datatype:
ALTER TABLE Employees
MODIFY Salary DECIMAL (12, 2);
Renaming a column:

ALTER TABLE Employees

DROP

The "DROP" statement in SQL (Structured Query Language) is a command used to remove existing
database objects, such as tables, indexes, views, or other entities. Its primary function is to delete
the specified object and free up associated resources within the database management system.

The most common use of "DROP" is with the "DROP TABLE" statement, which removes an entire
table and its data from the database. This is a permanent action, and once executed, the table
and its contents are irreversibly deleted. Similarly, "DROP INDEX" is used to remove an index
from a table, improving performance by freeing up storage space.

The "DROP VIEW" statement is employed to delete a view, which is a virtual table based on a
SELECT query. This action removes the view definition but does not affect the underlying base
tables.

While "DROP" commands are powerful tools for managing database objects, they require caution
as they can lead to data loss. It is crucial to ensure that the deletion of objects aligns with the
intended actions and won't disrupt the integrity or functionality of the database. Proper
permissions and backup procedures should be in place to mitigate the risks associated with
"DROP" statements.

Syntax: DROP [object_type] [object_name];

Deletes a database object, such as a table, index, or view, as shown in Figure 2.43.

e0e

DROP TABLE employees;

Fig. 2.43: DROP
TRUNCATE

The "TRUNCATE" statement in SQL is used to quickly remove all rows from a table, providing a
more efficient alternative to the "DELETE" statement for this specific purpose. Unlike "DELETE,"

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

which removes rows one at a time and generates individual log entries, "TRUNCATE" is a bulk
operation that deallocates data pages and resets the table to its initial state. This results in faster
execution and reduced log space usage, making it suitable for scenarios where the goal is to empty
a table without logging individual row deletions.

It's important to note that "TRUNCATE" is a DDL (Data Definition Language) statement, and as
such, it is a more invasive operation compared to "DELETE." It requires the user to have the
necessary permissions and may have limitations, such as the inability to be used on tables
involved in referential integrity constraints or with indexed views.

While "TRUNCATE" is efficient for mass removal of data, it should be used judiciously, considering
the specific requirements and constraints of the database. It's an effective tool for quickly clearing
large tables without the overhead associated with logging individual row deletions.

Syntax: TRUNCATE TABLE [table_name];

Removes all records from a table but retains the table structure for future use as shown in Figure
2.44.

e -+

TRUNCATE TABLE employees;

Fig. 2.44: TRUNCATE
RENAME

In SQL and many database management systems, the "RENAME" operation is not a standalone
statement but is often achieved through other specific commands or procedures. The ability to
rename database objects, such as tables, columns, indexes, or constraints, is critical for
maintaining a well-organized and understandable database schema.

For example, to rename a table, one might use the "ALTER TABLE" statement along with the
"RENAME TO" clause, specifying the new name for the table. The syntax may vary slightly
depending on the specific database system in use.

Similarly, the "ALTER TABLE" statement can be employed to rename columns within a table,
enhancing clarity or aligning with changing business requirements.

It's important to note that while renaming is a common operation, not all database management
systems support direct renaming of every type of object. In some cases, a workaround involves
creating a new object with the desired name, copying data, and then dropping the old object.

Renaming helps maintain consistency and readability in a database schema, allowing developers
and administrators to adjust object names without disrupting dependent applications or queries.
Care should be taken when renaming objects to ensure that any dependencies or references are
appropriately updated a shown in Figure 2.45.

Syntax: RENAME [object_type] [old_name] TO [new_name];

Renames an existing database object.

o 1

REMAME TABLE old_table TO new_table;

Fig. 2.45: RENAME

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII a

DDL statements play a crucial role in defining the schema and structure of a database. They are
often used by database administrators during the initial setup of a database or when
modifications to the structure are necessary. It's important to note that DDL statements
automatically commit the current transaction, as they involve changes to the database's overall
structure.

Practical Activity 2.3: Use Drop and Truncate command on Table.
Material Required: Laptop/Desktop, Mysql, Internet
Steps:
-- Create a sample table
CREATE TABLE Employees |
EmployeelD INT PRIMARY KEY,
FirstName VARCHAR(50),
LastNameVARCHAR(50),
Department VARCHAR(50)
);
-- Insert some sample data
INSERT INTO Employees (EmployeelD, FirstName, LastName, Department)
VALUES (1, 'John', 'Doe', 'HR)),
(2, 'Jane', 'Smith', 'IT),
(3, 'Alice', 'Johnson', 'Finance');
-- Display the contents of the table
SELECT * FROM Employees;
-- Drop the table (delete the entire table along with its structure)
DROP TABLE Employees;
-- Create the table again for demonstration purposes
CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,
FirstName VARCHAR(50),
LastNameVARCHAR(50),
Department VARCHAR(50)
)
-- Insert some sample data again
INSERT INTO Employees (EmployeelD, FirstName, LastName, Department)
VALUES (1, 'John', 'Doe’, 'HR),
(2, 'Jane', 'Smith', 'IT"),
(3, 'Alice', 'Johnson', 'Finance');
-- Display the contents of the table
SELECT * FROM Employees;
-- Truncate the table (remove all rows but keep the structure intact)
TRUNCATE TABLE Employees;
-- Display the contents of the table after truncation

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

‘ SELECT * FROM Employees; ‘

2.7. Data Manipulation Language (DML) Command

Data Manipulation Language (DML) commands in SQL provide essential functionalities for
interacting with and modifying data within a relational database. The SELECT statement is
pivotal, allowing users to retrieve specific data from one or more tables based on specified
conditions. This facilitates the extraction of meaningful information for analysis or presentation.
The INSERT command is used to add new records to a table, specifying values for each column,
thereby expanding the dataset. UPDATE enables the modification of existing records, allowing
changes to specific data fields based on user-defined criteria. DELETE is employed to remove
records from a table, selectively eliminating data that no longer meets relevant criteria.

DML commands are fundamental for applications, enabling dynamic and responsive interactions
with databases. Application developers use DML to fetch, insert, modify, and delete data, ensuring
the database accurately reflects the evolving needs of the business or application. Whether
retrieving customer information, adding new product records, or updating employee details, DML
commands play a central role in maintaining the integrity and relevance of data, forming the
backbone of dynamic and data-driven applications.

Data Manipulation Language (DML) commands in SQL are used to interact with and manipulate
the data stored within the database. DML commands primarily include operations for inserting,
updating, and deleting data in database tables. The key DML commands are as follows:

SELECT

The "SELECT" statement in SQL (Structured Query Language) is a fundamental command used
to retrieve data from one or more tables in a relational database. It is a crucial component for
querying, analyzing, and manipulating data stored in a database management system.

The basic syntax of a "SELECT" statement involves specifying the columns to retrieve data from
and the table or tables where the data resides. Users can further refine their queries using
conditions, sorting criteria, and aggregate functions.

The "SELECT" statement allows for versatile operations, including filtering data with the "WHERE"
clause, sorting results using "ORDER BY," and aggregating information using functions like
"SUM," "COUNT," and "AVG." Joins enable the combination of data from multiple tables, providing
a comprehensive view of interconnected information.

Beyond its core functionality, "SELECT" is used for creating temporary tables, views, and is an
integral part of subqueries. It serves as a powerful tool for generating reports, supporting decision-
making processes, and extracting valuable insights from large datasets.

In summary, the "SELECT" statement is a cornerstone of SQL, offering a flexible and powerful
means to interact with and retrieve specific data from relational databases as shown in Figure
2.46.

Syntax: SELECT [column]l, column2, ...] FROM [table] WHERE [condition];

Retrieves data from one or more tables based on specified criteria.

ove -+

SELECT employee_id, employee_name FROM employees
WHERE department_id = 106;

Fig. 2.46: SELECT

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

INSERT

The "INSERT" statement in SQL is a command used to add new records or rows of data into a
table. It plays a fundamental role in the process of populating and maintaining a relational
database by allowing users to insert data into specific columns of a table.

The basic syntax of the "INSERT" statement involves specifying the target table and providing
values or expressions for each column. Users can either insert values explicitly or use a subquery
to retrieve data from another table or source.

The "INSERT" statement supports different modes, such as "INSERT INTO" for adding individual
records and "INSERT INTO... SELECT" for inserting data from another table based on a query. It's
a versatile command that accommodates various scenarios, including bulk inserts, conditional
inserts, and the insertion of default values.

While "INSERT" is essential for adding new data, it also requires attention to data integrity,
ensuring that inserted values comply with defined constraints and adhere to the table's structure.
It is a critical tool for maintaining the accuracy and completeness of a database by allowing users
to continuously update it with fresh information as shown in Figure 2.47.

Syntax: INSERT INTO [table] (columnl, column2, ...) VALUES (valuel, value?2, ...);

Adds new records to a table.

o0 e +

INSERT INTO employees (employee_id, employee_name, salary)
VALUES (1©1, 'Vijay Goswami',6 500080);

Fig. 2.47: INSERT
UPDATE

The "UPDATE" statement in SQL is a command used to modify existing records within a table. It
allows users to change the values of specific columns in one or more rows based on specified
conditions, providing a way to dynamically update data in a relational database.

The basic syntax of the "UPDATE" statement involves specifying the target table, setting new
values for the desired columns, and using a "WHERE" clause to identify the rows that need
modification. This conditional aspect allows users to selectively update records that meet certain
criteria.

The "UPDATE" statement is versatile and supports various scenarios, such as updating a single
column or multiple columns simultaneously. It can also incorporate subqueries to derive values
for updates from other tables or sources.

While powerful, the "UPDATE" statement requires caution to avoid unintended consequences. It
is crucial to carefully construct the "WHERE" clause to ensure that only the intended rows are
modified, preventing accidental updates to the entire table.

"UPDATE" is a key tool for maintaining data accuracy and relevance, allowing for real-time
adjustments and corrections to database content in response to changing business conditions or
application requirements as shown in Figure 2.48.

Syntax: UPDATE [table] SET columnl = valuel, column?2 = value2 WHERE [condition];

Modifies existing records in a table based on a specified condition.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

o0 e -+

UPDATE employees SET salary = 55008
WHERE employee_id = 1@1;|

Fig. 2.48: UPDATE
DELETE

The "DELETE" statement in SQL is a command used to remove records from a table in a relational
database. It is a powerful and essential tool for managing data by allowing users to selectively
remove specific rows based on specified conditions.

The basic syntax of the "DELETE" statement involves specifying the target table and using a
"WHERE" clause to identify the rows that should be deleted. This conditional approach allows
users to delete records that meet certain criteria, providing flexibility and precision in data
management.

While "DELETE" is effective, it is important to exercise caution, as executing the statement
without a proper "WHERE" clause can result in the removal of all records in the table. To mitigate
this risk, it is common to include conditions that limit the scope of deletion.

The "DELETE" statement is instrumental in maintaining data integrity, cleanliness, and
compliance with business rules. It is often used in conjunction with other SQL statements to
perform complex data manipulation tasks and ensure the database's consistency and relevance
over time. Users should be mindful of the potential impact on data and use the statement
judiciously, especially in production environments as shown in Figure 2.49.

Syntax: DELETE FROM [table] WHERE [condition];

Removes records from a table based on a specified condition.

ove -+

DELETE FROM employees
WHERE employee_id = 161;

Fig. 2.49: DELETE

DML commands are fundamental for managing the content of a database, allowing users to
retrieve, add, update, and delete data. These commands are often used by application developers
and database administrators to maintain the accuracy and relevance of the information stored in
the database tables.

Practical Activity 2.4: Use DML commands to insert data records in Table.
Material Required: Laptop/Desktop, Mysql, Internet
Steps:
-- Create a table to store employee records
CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,
FirstName VARCHAR(50),

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

LastNameVARCHAR(50),
Department VARCHAR(50),
Salary DECIMAL(10, 2)

);
-- Insert data records into the Employees table
INSERT INTO Employees (EmployeelD, FirstName, LastName, Department, Salary)
VALUES (1, 'John', 'Doe', '"HR', 50000.00),
(2, 'Jane', 'Smith’, 'IT", 60000.00),
(3, 'Alice’, 'Johnson', 'Finance', 55000.00);
-- Verify that the data records have been successfully inserted
SELECT * FROM Employees;

2.8. Data Query Language (DQL) Commands

Data Query Language (DQL) commands in SQL primarily revolve around the versatile SELECT
statement, which serves as the cornerstone for retrieving information from a relational database.
Using the SELECT command, users can specify the columns they want to extract data from,
making it a powerful tool for customizing output. The WHERE clause in SELECT allows users to
filter results based on specific conditions, refining the dataset to meet particular criteria.

DQL commands play a pivotal role in various scenarios. For example, developers use them to
fetch user-specific information, analysts leverage them to generate insightful reports, and
administrators utilize them to assess database performance. The SELECT statement's flexibility
extends beyond basic data retrieval; it enables the execution of aggregate functions for
summarizing data and the utilization of joins to combine information from multiple tables.

In essence, DQL commands empower users to interact with databases dynamically, retrieving the
precise data needed for analysis, reporting, and decision-making. Their adaptability makes them
fundamental for extracting meaningful insights from the vast stores of information stored in
relational databases.

Data Query Language (DQL) commands in SQL are focused on retrieving data from the database.
The primary DQL command is:

SELECT

The "SELECT" statement in SQL is a fundamental command that retrieves data from one or more
tables in a relational database. It is a versatile and powerful tool for querying and manipulating
data, forming the backbone of database interactions.

The basic syntax of "SELECT" involves specifying the columns to retrieve data from and the table
or tables where the data resides. Users can employ conditions, sorting criteria with "ORDER BY,"
and aggregate functions like "SUM" or "COUNT" to shape the results. Joins enable the
combination of data from multiple tables, providing a comprehensive view of interconnected
information.

"SELECT" supports a wide range of operations, including the creation of temporary tables and
views, as well as serving as a crucial component of subqueries. It facilitates the extraction of
specific data subsets, aiding in the generation of reports, analysis, and decision-making processes
as shown in Figure 2.50.

Syntax: SELECT [columnl, column2, ...] FROM [table] WHERE [condition];

Retrieves data from one or more tables based on specified criteria.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

o0 e -+

SELECT employee_id, employee_name FROM employees
WHERE department_id = 1@8;

Fig. 2.50: SELECT

The SELECT statement is versatile, allowing users to specify the columns they want to retrieve,
filter results based on conditions in the WHERE clause, and even perform aggregate functions
(e.g., COUNT, SUM, AVQG) for analysis.

DQL commands are crucial for extracting meaningful information from databases. They provide
the foundation for generating reports, obtaining insights, and facilitating decision-making
processes. Application developers, analysts, and administrators frequently use DQL to interact
with databases, ensuring access to relevant data for various purposes. The flexibility and power
of DQL make it an integral part of SQL, contributing to the effectiveness of relational database
systems in managing and delivering information.

Practical Activity 2.5. Use DCL command Select to retrieve data records.
Material Required
Laptop/Desktop, Mysql, Internet
Steps:
-- Create a table to store employee records
CREATE TABLE Employees (

EmployeelD INT PRIMARY KEY,

FirstName VARCHAR(50),

LastName VARCHAR(50),

Department VARCHAR(50),

Salary DECIMAL(10, 2)
)
-- Insert data records into the Employees table
INSERT INTO Employees (EmployeelD, FirstName, LastName, Department, Salary)
VALUES (1, Vijay', 'Goswami', 'HR', 50000.00),

(2, 'Aradhana’, 'Tiwari', 'IT', 60000.00),
(3, 'Kunal', 'Singh’, 'Finance', 55000.00);

-- Retrieve all records from the Employees table
SELECT * FROM Employees;
-- Retrieve records for employees in the HR department
SELECT * FROM Employees WHERE Department = 'HR';
-- Retrieve records for employees with a salary greater than 55000
SELECT * FROM Employees WHERE Salary > 55000.00;

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

2.9. Data Control Language (DCL) Command

Data Control Language (DCL) in SQL comprises commands focused on managing access and
permissions within a relational database. The two primary DCL commands are GRANT and
REVOKE. GRANT assigns specific privileges, such as SELECT, INSERT, UPDATE, or DELETE, on
particular database objects (e.g., tables or views) to users or user roles. For example, a command
might grant SELECT and INSERT privileges on an "employees" table to a specific user. On the
other hand, REVOKE removes previously granted privileges, restricting or revoking a user's access
to certain operations on specified database objects. The two main DCL commands are:

GRANT

The "GRANT" statement in SQL is a command used to provide specific privileges or permissions
to database users or roles. It is a crucial component of database security, allowing administrators
to control access to various database objects and operations.

The basic syntax of the "GRANT" statement involves specifying the type of privilege (e.g., SELECT,
INSERT, UPDATE, DELETE), the target object (such as a table or view), and the user or role to
which the privilege is being granted. This statement enables fine-grained control over who can
perform specific actions within the database as shown in Figure 2.51.

Syntax: GRANT [privilege(s)] ON [object] TO [user];

eve -+

GRANT SELECT, INSERT ON employees To userl;

Fig. 2.51: GRANT
This example grants the SELECT and INSERTS privileges on the "employees" table to the user
named "userl."
REVOKE
The "REVOKE" statement in SQL is a command used to retract or revoke previously granted
privileges or permissions from database users or roles. It is a crucial element in database security,
allowing administrators to modify access rights and restrict the actions that users or roles can
perform within the database.

The basic syntax of the "REVOKE" statement involves specifying the type of privilege to be revoked,
the target object (such as a table or view), and the user or role from which the privilege is being
revoked. This statement enables administrators to fine-tune access control, adapting permissions
based on changing requirements or security considerations as shown in Figure 2.52.

Syntax: REVOKE [privilege(s)] ON [object] FROM [user];

eve -+

REVOKE UPDATE ON products FROM user2;

Fig. 2.52: REVOKE

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

This example revokes the UPDATE privilege on the "products" table from the user named "user2."

Practical Activity 2.6. Use Update and Delete command to modify the data records.
Material Required
Laptop/Desktop, Mysql, Internet
Steps:
-- Create a table to store employee records
CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,

FirstName VARCHAR(50),
LastNameVARCHAR(50),

Department VARCHAR(50),

Salary DECIMAL(10, 2)
);
-- Insert data records into the Employees table
INSERT INTO Employees (EmployeelD, FirstName, LastName, Department, Salary)
VALUES (1, 'John', 'Doe’, 'HR', 50000.00),

(2, 'Jane', 'Smith’, 'IT", 60000.00),
(3, 'Alice', 'Johnson', 'Finance', 55000.00);

-- Display the initial contents of the Employees table
SELECT * FROM Employees;
-- Update the salary of employee with EmployeelD 1
UPDATE Employees
SET Salary = 55000.00
WHERE EmployeelD = 1;
-- Display the updated contents of the Employees table
SELECT * FROM Employees;
-- Delete the record of employee with EmployeelD 3
DELETE FROM Employees
WHERE EmployeelD = 3;
-- Display the contents of the Employees table after deletion

2.10. Transaction Control Language (TCL)

Transaction Control Language (TCL) in SQL consists of commands that manage the transactions
within a relational database. The main TCL commands include COMMIT, ROLLBACK, and
SAVEPOINT.

COMMIT

The "COMMIT" statement in SQL is a command used to make the changes performed during a
transaction permanent and persistent in a database. Transactions are sequences of one or more
SQL statements executed as a single unit of work. The "COMMIT" statement signifies the
successful completion of a transaction, confirming that all changes made within that transaction
should be finalized and become a permanent part of the database.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Once the "COMMIT" statement is issued, the changes are saved to the database, and the
transaction is considered successfully completed. This ensures data consistency and integrity, as
either all the changes within the transaction are applied or none at all. In case of errors or issues
during the transaction, users have the option to use the "ROLLBACK" statement to undo the
changes and revert the database to its state before the transaction starts.

Syntax: COMMIT;

Commits all the changes made during the current transaction to the database, making them
permanent. It marks the successful end of a transaction.

eove |

BEGIN TRANSACTION;
——5QL statements
COMMIT;]

Fig. 2.53: COMMIT
ROLLBACK

The "ROLLBACK" statement in SQL is a command used to undo the changes made during the
current transaction, reverting the database to its state before the transaction began. Transactions
are sequences of one or more SQL statements executed as a single unit of work. The "ROLLBACK"
statement is essential for maintaining data consistency and integrity by providing a mechanism
to handle errors, exceptions, or other issues that may arise during the execution of a transaction.

If any part of a transaction encounters an error or if the user decides to cancel the transaction,
the "ROLLBACK" statement is issued to discard all changes made during that transaction. This
ensures that the database remains in a consistent state, and no partial or erroneous data
modifications are applied.

The "ROLLBACK" statement is particularly useful in scenarios where complex operations or
multiple database modifications are involved. It helps prevent the database from entering an
inconsistent state and allows for a controlled and graceful exit from a transaction. In conjunction
with the "COMMIT" statement, "ROLLBACK" contributes to the reliability and robustness of
database transactions, ensuring that data remains accurate and dependable despite potential
issues during execution as shown in Figure 2.54.

Syntax: ROLLBACK;

eve -+

BEGIN TRANSACTION,;
— SQL statements
ROLLBACK;

Fig. 2.54: ROLLBACK

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

SAVEPOINT

The "SAVEPOINT" statement in SQL is a command used to set a point within a transaction to
which one can later roll back. It allows for more granular control over undoing specific portions
of a transaction rather than rolling back the entire transaction.

The syntax typically involves issuing the "SAVEPOINT" command followed by a user-defined name
for the savepoint. Later in the transaction, if a rollback is required, the "ROLLBACK TO" statement
can be used, specifying the savepoint's name.

"SAVEPOINT" is especially useful in complex transactions or in situations where specific
checkpoints are needed for data consistency. It provides a mechanism to handle errors or
unexpected conditions gracefully while still preserving portions of the transaction that have been
successfully executed. The combination of "SAVEPOINT" and "ROLLBACK TO" contributes to
transactional control and robust error handling in SQL databases as shown in Figure 2.55.
Syntax: SAVEPOINT [savepoint_name];

Establishes a point within a transaction to which you can later roll back. It allows for partial
rollbacks.

eve -+

SAVEPOINT spl;
— SQL statements
ROLLBACK TO spi;

Fig. 2.55: SAVEPOINT

Assignment.2.3:

e Write DCL command Grant and Revoke to authorise and withdraw privileges for data
operation.

e Write TCL command Commit to save, Rollback and SavePoint command to undo the data
transaction in Table.

SUMMARY

e SQL is a domain-specific language for managing relational databases, featuring data
retrieval, manipulation, and definition capabilities.

e Key features include SELECT for data retrieval, INSERT/UPDATE/DELETE for
manipulation, and CREATE/ALTER/DROP for definition.

e Data integrity is ensured through constraints like unique, primary key, and foreign key.

e MySQL, a popular RDBMS, offers Community and Enterprise editions, with installation
steps outlined for various operating systems.

e Prerequisites for MySQL setup include the MySQL software, .NET Framework, and Visual
C++ Redistributable.

e MySQL supports various data types like INT, VARCHAR, and DATE, with constraints
ensuring accurate data storage.

e Constraints like PRIMARY KEY uniquely identify records, FOREIGN KEY establishes table
relationships, and UNIQUE enforces uniqueness.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

e Installation steps for MySQL involve downloading the installer, configuring the server, and
verifying the installation.

e Date and time data types in MySQL include DATE, TIME, DATETIME, and TIMESTAMP,
catering to temporal data management.

e Overall, SQL and MySQL provide powerful tools for managing and querying relational
databases efficiently.

CHECK YOUR PROGRESS

A. MULTIPLE CHOICE QUESTIONS

1. What is SQL primarily used for? (a) Managing and manipulating relational databases (b)
Managing and manipulating object-oriented databases (c) Managing and manipulating
NoSQL databases (d) Managing and manipulating file-based databases

2. Which of the following is NOT a common SQL command? (a) SELECT (b) CREATE (c)
RETRIEVE (d) DELETE

3. Which SQL statement is used for adding new records to a database? (a) SELECT (b) INSERT
(c) UPDATE (d) CREATE

4. Which SQL statement is used to control access to the database by granting or revoking
permissions? (a) SELECT (b) GRANT (c) UPDATE (d) DELETE

5. Which SQL feature allows users to group multiple SQL statements into a single, atomic
operation? (a) Data Retrieval (b) Transaction Control (c) Joins and Relationships (d) Data
Manipulation

6. What is the purpose of the "MySQL Installer" mentioned in the installation steps? (a) To
download MySQL database files (b) To execute SQL queries (c) To manage the installation
process of MySQL components (d) To configure the MySQL server

7. What data type is suitable for storing whole numbers without decimal points? (a)
VARCHAR (b) DECIMAL (c) FLOAT (d) INT

8. Which constraint ensures that a column cannot contain NULL values? (a) DEFAULT (b)
CHECK (c) UNIQUE (d) NOT NULL

9. Which data type is ideal for storing large amounts of binary data, such as images or
multimedia files? (a) BLOB (b) VARBINARY (c) BINARY (d) TEXT

10.What constraint ensures that all values in a column are unique? (a) PRIMARY KEY (b)
FOREIGN KEY (c) UNIQUE (d) CHECK

B. Fill in the Blanks:

1. SQL's statement allows users to retrieve data from one or more tables based
on specified criteria.

2. SQL provides commands for adding new records , modifying existing data
(UPDATE), and removing records (DELETE) in a database.

3. SQL includes commands for defining and the structure of a database.

4. SQL allows administrators to control access to the database by or revoking

permissions on tables and other database objects.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

5. SQL supports transactions, allowing users to group SQL statements into a
single, atomic operation.

6. SQL enables the definition of constraints, such as unique, , foreign key, and
check constraints, to enforce data integrity rules within the database.

7. MySQL comes in different editions, such as MySQL Community Edition and
MySQL Enterprise Edition (commercial, with additional features).

8. Visit the official MySQL website and choose the MySQL Installer for your operating system
)

9. Upon downloading the MySQL setup, extract it to any location, and then double-click the
MSI installer file to initiate the installation.

10.SQL facilitates the establishment of relationships between tables through
operations, allowing for the retrieval of related data from multiple tables in a single query.

C. True or False
1. SQL stands for Structured Query Language.

2. Data Manipulation Language (DML) includes commands for manipulating data, not for
creating or altering database structures.

3. MySQL is available in both Community Edition (free and open-source) and Enterprise
Edition (commercial).

4. SQL supports transactions, allowing users to perform multiple SQL statements as a single
atomic operation.

5. Constraints in SQL can indeed be used to enforce data integrity rules within the database.
6. MySQL is indeed a relational database management system.

7. Data Definition Language (DDL) commands in SQL include commands like CREATE,
ALTER, and DROP, not SELECT, INSERT, and DELETE.

8. SQL's JOIN operations are used to establish relationships between tables.
9. Microsoft .NET Framework 4.5.2 is listed as a prerequisite for setting up MySQL.
10.The UNIQUE constraint in SQL ensures that all values in a column are distinct.
D. Short Question Answers
1. What is SQL, and what is its primary purpose in database management?
2. What are the key features of SQL, and how do they contribute to database management?

3. Can you explain the differences between Data Manipulation Language (DML) and Data
Definition Language (DDL) in SQL?

How does SQL ensure data integrity, and what role do constraints play in this process?
Name three popular relational database management systems that utilize SQL.
What are the steps involved in installing MySQL on a Windows operating system?

What are the prerequisites for setting up MySQL on your system?

X N oM B

How does MySQL handle data types, and what are some common data types supported by
MySQL?

9. What are the primary functions of a PRIMARY KEY constraint in SQL?

10.Explain the purpose of the FOREIGN KEY constraint and its importance in database
relationships.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII
Session 3. Use Functions in SQL

Naina was a curious girl living in Dehradun, fascinated by numbers. One day, she stumbled upon
a book about SQL Functions. Intrigued, she decided to learn more. She visited a marketplace and
helped a vendor organize his inventory using the "ORDER BY" function. Next, she assisted a
librarian with the "COUNT" function to categorize books by genre. Naina then aided a baker in
calculating daily pastry sales using the "AVG" function. Finally, she helped musicians find the
highest-paid performer for a concert using the "MAX" function. With each success, Naina realized
the power of SQL Functions to solve real-world problems. Her adventures spread throughout
Dehradun, inspiring others to use data magic for good. As illustrated in Figure 3.1.

Figure 3.1: Naina using SQL functions

In this Session, you will learn about SQL Functions, Single Row Functions-Math Functions, string
Functions, date and Time Functions

Introduction

In SQL, the FUNCTION is a powerful feature that allows users to encapsulate a set of SQL
statements into a reusable module, providing a way to modularize code and simplify complex
operations. Functions can be categorized into two main types: built-in functions that are part of
the SQL language and user-defined functions created by users to meet specific requirements.

Built-in functions in SQL include a variety of mathematical, string manipulation, date and time,
and aggregate functions. For instance, the SUM () function calculates the total of a numeric
column, and the UPPER () function converts characters to uppercase.

User-defined functions, on the other hand, are created by users to perform custom operations.
These functions can be particularly useful for tasks that need to be executed repeatedly within a
database. A user-defined function is typically written in SQL or other supported programming
languages and can accept parameters and return a value.

Functions enhance code reusability, readability, and maintainability in SQL, allowing developers
to create modular and efficient database logic. They play a crucial role in streamlining complex
queries and promoting a structured approach to database design and management.

3.1 SQL Functions

In SQL, functions can be broadly categorized into two main types: Single Row Functions and
Aggregate Functions.

Single Row Functions:

String Functions: Manipulate character strings. Examples include UPPER() (converts to
uppercase), LOWER() (converts to lowercase), CONCAT() (concatenates strings), and LENGTH()
(returns the length of a string).

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

String functions in SQL are used to manipulate and perform operations on text data (strings).
Here are some commonly used string functions:

CONCAT (or | |):

Concatenates two or more strings together as shown in Figure 3.2.

eve -+

SELECT CONCAT (first_name, ' ', last_name) AS full_name
FROM emplﬂyeesﬂ

Fig. 3.2: CONCAT (or | |)
LENGTH (or LEN):

Returns the length (number of characters) of a string. As shown in Figure 3.3.

i ® 1+

SELECT LENGTH(product_name) AS name_length FROM products;

Fig. 3.3: LENGTH (or LEN)
UPPER:

Converts all characters in a string to uppercase. As shown in Figure 3.4.

@ ® i

SELECT UPPER(product_category) AS upper_category FROM products;

Fig. 3.4: UPPER
LOWER:

Converts all characters in a string to lowercase. As shown in Figure 3.5.

SELECT LOWER(email) as lower_email FROM customers;

Fig. 3.5: LOWER
SUBSTRING (or SUBSTR):

Returns a substring of a given length from a specified position in a string. As shown in Figure 3.6.

eve -+

SELECT SUBSTRING(product_name, 1, 3) AS short_name FROM products;

Fig. 3.6: SUBSTRING (or SUBSTR)

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

TRIM:

Removes leading and trailing spaces from a string. As shown in Figure 3.7.

ove -+

SELECT TRIM(product_description) AS trimmed_description FROM products;

Fig. 3.7: TRIM
REPLACE:

Replaces occurrences of a specified substring with another substring. As shown in Figure 3.8.

ove -+

SELECT REPLACE(address, 'Street', 'St.') AS modified_address FROM customers;

Fig. 3.8: REPLACE
LEFT:

Returns a specified number of characters from the beginning of a string. As shown in Figure 3.9.

ove -+

SELECT LEFT(product_code, 3} AS short_code FROM products;

Fig. 3.9: LEFT
RIGHT:
Returns a specified number of characters from the end of a string. As shown in Figure 3.10.
o0 e

SELECT RIGHT(account_number, 4) AS last_digits FROM accounts;

Fig. 3.10: RIGHT
CHAR_LENGTH (or CHARACTER_LENGTH):

Returns the number of characters in a string. As shown in Figure 3.11.

o0 e 1

SELECT CHAR_LENGTH AS city_length FROM locations;

Fig. 3.11: CHAR LENGTH (or CHARACTER LENGTH)

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Numeric Functions: Operate on numeric data. Figures include ROUND() (rounds a number),
ABS() (returns the absolute value), and SQRT|() (returns the square root).

Numeric functions in SQL are used to perform operations on numeric data types. Here are some
commonly used numeric functions:

ABS:
Returns the absolute (positive) value of a numeric expression. As shown in Figure 3.12.
ove -+

SELECT ABS(-18) AS absolute_value;

Fig. 3.12: ABS
ROUND:

Rounds a numeric value to the nearest integer or to the specified number of decimal places. As
shown in Figure 3.13.

o0 e

SELECT ROUND(15.789, 2) AS rounded_value;

Fig. 3.13: ROUND
CEIL (or CEILING):

Returns the smallest integer greater than or equal to a numeric expression. As shown in Figure
3.14.

ove +

SELECT CEIL(8.45) AS ceiling_value;
Fig. 3.14: CEIL (or CEILING)

FLOOR:
Returns the largest integer less than or equal to a numeric expression. As shown in Figure 3.15.
ove 1

SELECT FLOOR(8.45) AS floor_wvalue;

Fig. 3.15: FLOOR
POWER:

Raises a numeric value to the power of another numeric value. As shown in Figure 3.16.

o0 e -+

SELECT POWER(2, 3) AS result;
Fig. 3.16: POWER

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

SQRT:
Returns the square root of a numeric expression. As shown in Figure 3.17.
ove

SELECT SQRT(25) AS square_root;

Fig. 3.17: SORT
EXP:

Returns the value of the mathematical constant "e" raised to the power of a numeric expression.
As shown in Figure 3.18.

ove -+

SELECT EXP(1) AS result;

Fig. 3.18: EXP
LOG:

Returns the natural logarithm of a numeric expression. As shown in Figure 3.19.

oeve -+

SELECT LOG(18) AS result;

Fig. 3.19: LOG
MOD (or %]):

Returns the remainder of a division operation. As shown in Figure 3.20.

oeve -+

SELECT 17 % 5 AS remainder;

Fig. 3.20: MOD (or %)
RAND (or RANDOM):

Returns a random number between O and 1. As shown in Figure 3.21.

ove -+

SELECT RAND() as random_number;

Fig. 3.21: RAND (or RANDOM)

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

Note: These functions provide a range of capabilities for performing mathematical operations and
manipulations on numeric data in SQL queries. Keep in mind that the availability of specific
functions may vary between different database systems, so it's advisable to consult the
documentation of the database you are working with.

Assignment 2.1. Write down the syntax of the following:

ROUND
CONCAT (or | |)
TRIM
REPLACE
MOD (or %)

QAW

Date Functions: Handle date and time data. Figures include SYSDATE (returns the current date
and time), MONTHS_BETWEEN() (returns the number of months between two dates), and
TO_CHAR() (converts a date to a string).

Date functions in SQL are used to perform operations on date and time values. Here are some
commonly used date functions:

CURRENT_DATE:

Returns the current date. As shown in Figure 3.22.

o0 e -+

SELECT CURRENT_DATE as current_date;

Fig. 3.22: CURRENT_DATE
CURRENT_TIME:

Returns the current time. As shown in Figure 3.23.

o0 e 1

SELECT CURRENT_TIME as current_timeﬂ

Fig. 3.23: CURRENT_TIME
CURRENT_TIMESTAMP (or NOW):

Returns the current date and time. As shown in Figure 3.24.

oo e 1

SELECT CURRENT_TIMESTAMP as current_timestampﬂ

Fig. 3.24: CURRENT TIMESTAMP (or NOW)

DATE:
Extracts the date part from a date or timestamp expression. As shown in Figure 3.25.
o0 e

SELECT DATE("2023-15-15 14:30:00") AS extracted_date;|
Fig. 3.25: DATE

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

EXTRACT:

Extracts a specific component (year, month, day, hour, etc.) from a date or timestamp. As shown
in Figure 3.26.

oeve 1

SELECT EXTRACT(YEAR FROM '2023-01-15') as extracted_year;

Fig. 3.26: EXTRACT
DATE_ADD (or +), DATE_SUB (or -):

Adds or subtracts a specified time interval from a date or timestamp. As shown in Figure 3.26.

o0 e I

SELECT DATE_ADD("2823-81-15", INTERVAL 3 MONTH) AS added_date;

Fig. 3.27: DATE_ADD (or +), DATE_SUB (or -)
DATEDIFF:

Returns the difference in days between two dates. As shown in Figure 3.28.

o0 e 1

SELECT DATEDIFF("2023-01-20", "2023-81-15") AS date_difference;

Fig. 3.28: DATEDIFF
DATE_FORMAT:

Formats a date or timestamp as a string based on a specified format, as shown in Figure 3.29.

ove -+

SELECT DATE_FORMAT("2023-081-15", "%y-%m-%d") as formatted_date;

Fig. 3.29: DATE_FORMAT
NOW (or SYSDATE):

Returns the current date and time. As shown in Figure 3.30.

ove -+

SELECT NOW() AS current_date_time;

Fig. 3.30: NOW (or SYSDATE)

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII m

TIMESTAMPDIFF:

Returns the difference between two timestamps based on a specified unit (day, hour, minute,
etc.). As shown in Figure 3.31.

o0 e +

SELECT TIMESTAMPDIFF(MINUTE, "2023-01-15 12:00:00", "2023-01-15 14:30:08")
AS (minutes_diference);

Fig. 3.31: TIMESTAMPDIFF

These functions provide powerful tools for working with date and time values in SQL queries. As
always, the availability of specific functions may vary between different database systems, so it's
recommended to refer to the documentation of the database you are using.

Conversion Functions: Convert data types. Figures include TO_NUMBER() (converts a string to
a number) and TO_DATE() (converts a string to a date).

Conversion functions in SQL are used to convert one data type to another. Here are some
commonly used conversion functions:

CAST:

Converts an expression from one data type to another. As shown Figure 3.32.

SELECT CAST("123™ AS INT) AS converted_inteder;

Fig. 3.32: CAST
CONVERT:

Converts an expression from one data type to another (syntax may vary between database
systems). As shown in Figure 3.33.

o0 e +

SELECT CONVERT("2023-81-15", DATE)} as converted_date;

Fig. 3.33: CONVERT
TO_CHAR (or FORMAT):

Converts a date or timestamp to a character string with a specified format. As shown in Figure
3.34.

oece -+

SELECT TO_CHAR("2023-81-15", "YYYY-MM-DD") as formatted_date;

Fig. 3.34: TO_CHAR (or FORMAT)

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII m

TO_DATE:

Converts a character string to a date. As shown in Figure 3.35.

oece +

SELECT TO_DATE("2023-81-15", "YYYY-MM-DD") AS converted_date;

Fig. 3.35: TO_DATE
TO_NUMBER:

Converts a character string representing a number to a numeric data type. As shown in Figure
3.36.

oeve -+

SELECT TO_NUMBER("123.45", "999.99") AS converted_number;

Fig. 3.36: TO_NUMBER
CONVERT _TZ:

Converts a datetime value from one time zone to another. As shown in Figure 3.37.

SELECT CONVERT+TZ("2023-01-15 12:@0:0@", "UTC", "Asia/Kolkata")
as converted_date;

Fig. 3.37: CONVERT_TZ

PARSE:
Converts a character string to a date or time using a specified format. As shown in Figure 3.38.
ove -+

SELECT PARSE("2023-01-15", "YYYY-MM-DD") as converted_date;

Fig. 3.38: PARSE
TRY_CAST (or TRY CONVERT):
Similar to CAST or CONVERT but returns null if the conversion fails. As shown in Figure 3.39.

oe0e |

SELECT TRY_CAST("ABC" as INT) as cunuerted_result;|

Fig. 3.39: TRY _CAST (or TRY CONVERT)

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

BIT:

Converts an expression to a bit data type. As shown in Figure 3.40.

o0 e +

SELECT BIT("true") as converted_bit,

Fig. 3.40: BIT
NVL (or COALESCE):

Returns the first non-null expression among its arguments, effectively converting null values. As
shown in Figure 3.41.

o0 e -+

SELECT COALESCE(salary, @) AS adjusted_salary FROM employees;

Fig. 3.41: NVL (or COALESCE)

These functions are useful when you need to transform data from one type to another or handle
potential data type mismatches in your SQL queries. The syntax and availability of these functions
may vary between different database systems. Always refer to the documentation of the specific
database you are working with.

Aggregate Functions:

Aggregate functions in SQL perform operations on a set of values and return a single result.
Common aggregate functions include ‘SUM()’ (calculates the total of numeric values), ‘AVG()’
(computes the average), ‘COUNT()’ (counts the number of rows), ‘MIN()’ (returns the minimum
value), and ‘MAX()’ (returns the maximum value). These functions are often used in conjunction
with the ‘GROUP BY’ clause to perform calculations on grouped data. For example,
‘SUM(sales_amount)’ can calculate total sales for each product category. Aggregate functions
simplify data analysis by summarizing information and are crucial in generating insights from
large datasets.

SUM(): Calculates the sum of a numeric column.

The ‘SUM()’function in SQL is an aggregate function used to calculate the total of numeric values
in a specified column. It is often used in combination with the ‘GROUP BY’ clause to calculate
the sum for each group of rows based on one or more columns. Here are some basic examples as
shown in Figure 3.42 and 3.43.

Without GROUP BY:
o0e -+

— Calculate the total salary for all employees
SELECT SUM{salary) AS total_salary FROM employees;

Fig. 3.42: Without GROUP BY

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII m

0.With GROUP BY:
edve

— Calculate the total sales for each product catesgory
SELECT product_category, SUM(sales_amount) AS total_sales
FROM sales

GROUP BY product_category;

Fig. 3.43: With GROUP BY

In the first example, ‘SUM(salary)’ calculates the total salary across all employees in the
"employees" table. In the second example, ‘SUM(sales_amount)’ calculates the total sales for each
unique product category in the "sales" table.

It's important to note that when using ‘SUM()’ with ‘GROUP BY’, the columns listed in the
‘SELECT” clause that are not part of an aggregate function (like ‘SUM’) must be included in the
‘GROUP BY’ clause.

Here's an example of using ‘SUM()’ with ‘GROUP BY’ and additional columns in the ‘SELECT’
clause as shown in Figure 3.44.

ove -+

— Calculate the total sales for each product in each catedory
SELECT product_category, product_name, SUM(sales_amount)
FROM sales
GROUP BY product_category, product_name;
Fig. 3.44: ‘SUM(salary)’

This query calculates the total sales for each product in each product category, and the result will
include columns for ‘product_category’, ‘product_name’, and‘total_sales’.

AVG(): Computes the average value of a numeric column.

The ‘AVG()’ function in SQL is an aggregate function used to calculate the average (mean) value
of a numeric column. It is applied to a set of values and returns a single result. Here are some
examples of how to use the ‘AVG()’function as shown in Figure 3.45, 3.46, 3.47 and 3.48.

Calculate the average salary:

o0V e I

SELECT AVG(salary) AS average_salary FROM employeesﬂ

Fig. 3.45: Calculate the average salary

Calculate the average price of products in each category:

@ ® 1

SELECT category, AVG(price) as average_price
FORM products
GROUP BY category;]

Fig. 3.46: Calculate the average price of products in each category

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII m

Calculate the overall average age of customers:

ove -+

SELECT AVG(age) as average_age FROM customers;|

Fig. 3.47: Calculate the overall average age of customers

Calculate the average order value:

oeve -+

SELECT AVG(total_amount) AS averade_order_value FROM orders;

Fig. 3.48: Calculate the average order value

The ‘AVG()’ function is valuable for obtaining insights into the central tendency of numeric data,
providing a summary measure of the typical value within a dataset. It is commonly used in
combination with the ‘GROUP BY’ clause to calculate averages for specific groups in the data.

COUNT|(): Counts the number of rows in a result set or the number of non-null values in a column.

The ‘COUNT()’ function in SQL is an aggregate function that counts the number of rows in a
specified column or the number of non-null values. It is commonly used to retrieve the count of
records that meet certain criteria or to obtain an overall row count in a table as shown in Figures
3.49, 3.50, 3.51 and 3.52.

Count all records:

o0 e H

SELECT COUNT(=%) AS total_records FROM table_name;

Fig. 3.49: Count all records
Count specific column values:

ove -+

SELECT COUNT(product_id)} AS total_products FROM products;

Fig. 3.50: Count specific column values

Count distinct values:

SELECT COUNT(DISTINCT category) as unique_catedories
FROM products;

Fig. 3.51: Count distinct values

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

Count with conditions:

o0 e 1

SELECT COUNT(=*) AS high_salary_employees
FROM employees
WHERE salary > 50088:

Fig. 3.52: Count with conditions

The ‘COUNT|()’ function is a versatile tool for obtaining numerical insights about the data, and it
can be used in various scenarios to analyse and summarize information within a SQL database.

MIN(): Finds the minimum value in a column.

The ‘MIN()’ function in SQL is an aggregate function that returns the smallest (minimum) value
in a specified column. It is commonly used to find the minimum value within a dataset. Here are
some examples of how to use the ‘MIN()’ function as shown in Figures 3.53, 3.54, 3.55 and 3.56:

Find the minimum salary in the employees table:

o0 e 1

SELECT MIN(salary) AS min_salary FROM employees;
Fig. 3.53: Find the minimum salary in the employees table

Find the earliest order date in the orders table:

ove I

SELECT MIN({ordexr_date) AS earliest_order_date FROM orders;

Fig. 3.54: Find the earliest order date in the orders table
Find the minimum price for each product category:

SELECT category, MIN(price) as min_price
FROM products
GROUP BY category;

Fig. 3.55: Find the minimum price for each product category

Find the minimum age of customers:

ove -+

SELECT MIN(age) AS min_age FROM cugtcmers;|

Fig. 3.56: Find the minimum age of customers

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

The ‘MIN()’ function is useful for identifying the smallest value in a column, providing insights
into the lower bound of the data. It can be applied to various scenarios, such as determining the
minimum salary, earliest date, or lowest price within a dataset.

MAX(): Retrieves the maximum value in a column.

The MAX() function in SQL is an aggregate function that returns the largest (maximum) value in
a specified column. It is commonly used to find the maximum value within a dataset. Here are
some examples of how to use the MAX() function as shown in Figures 3.57, 3.58, 3.59 and 3.60.

Find the maximum salary in the employees table:

ove

SELECT MAX(salary) as max_salary FROM employees;

Fig. 3.57: Find the maximum salary in the employees table
Find the latest order date in the orders table:

oce -+

SELECT MAX(order_date) AS latest_order_date FROM orders;

Fig. 3.58: Find the latest order date in the orders table
Find the maximum price for each product category:

ove -+

SELECT catedory, MAX(price) AS max_price
FORM products
GROUP BY catesory;

Fig. 3.59: Find the maximum price for each product category
Find the maximum age of customers:

o000 -+

SELECT MAX(age) AS max_age FROM customers;

Fig. 3.60: Find the maximum age of customers

The ‘MAX()’ function is useful for identifying the largest value in a column, providing insights into
the upper bound of the data. It can be applied to various scenarios, such as determining the
maximum salary, latest date, or highest price within a dataset.

Aggregate functions are often used in conjunction with the GROUP BY clause to perform
calculations on groups of rows rather than the entire result set. For example, you might use
‘SUM()’to find the total sales for each product category.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

Understanding and effectively using these functions is crucial for writing efficient and expressive
SQL queries. They provide a powerful toolkit for manipulating and analyzing data in relational
databases.

Assignment.2.2: List the various Single Row Functions and Aggregate functions.

Single Row Functions

01
02
03
04

Aggregate Functions

01
02
03
04
05

3.2 Single Row Functions-Math Functions, string Functions, date and Time Functions

In relational databases, single-row functions operate on individual rows of data and return a
single result for each row. These functions can be categorized into various types, including Math
Functions, String Functions, and Date/Time Functions. Here's an overview of each category:

Math Functions:

Math functions in relational databases provide essential tools for performing numerical
calculations on data. ABS(x) returns the absolute value of x, CEIL(x) or CEILING(x) rounds x up
to the nearest integer, while FLOOR(x) rounds it down. ROUND(x, n) rounds x to the nearest
integer or n decimal places, and TRUNC(x, n) truncates x to n decimal places. MOD(x, y) calculates
the remainder of x divided by y. These functions are invaluable for tasks involving numeric
manipulation, such as financial calculations or statistical analysis. Whether it's finding absolute
values, rounding numbers, or obtaining remainders, math functions enhance the precision and
versatility of SQL queries, contributing to the robustness of data analysis and reporting.

ABS(x):
Returns the absolute value of x.

The ABS(x) function in relational databases is a mathematical function that plays a crucial role
in data manipulation. ABS stands for "absolute,” and the ABS(x) function specifically returns the
absolute or non-negative value of the input x. Whether x is a positive or negative number, ABS(x)
ensures that the result is its positive counterpart. This function is particularly useful in scenarios
where the sign of a numeric value is irrelevant, and only the magnitude matters. For example,
when dealing with financial data or measurements, ABS(x) helps standardize values for consistent
analysis. It's a fundamental tool in SQL queries for obtaining the absolute values of numeric data,
contributing to accurate calculations and meaningful insights in various database applications.

CEIL(x) or CEILING(x):
Returns the smallest integer greater than or equal to x.

The CEIL(x) or CEILING(x) function in relational databases is a mathematical function used for
rounding numerical values to the smallest integer greater than or equal to the input x. This
function is valuable in scenarios where data precision is crucial. If x is a decimal or fractional
number, CEIL(x) ensures that the result is rounded up to the next whole number. For example,

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

if x is 4.25, CEIL(x) returns 5. It is particularly beneficial in financial calculations, quantity
measurements, or any context where rounding up to the nearest integer is necessary. By
incorporating CEIL(x) into SQL queries, database developers and analysts can manage and
present data with a higher degree of accuracy, providing more reliable information for decision-
making processes.

FLOOR(x):
Returns the largest integer less than or equal to x.

The FLOOR(x) function in relational databases is a mathematical operation that rounds a
numerical value x down to the largest integer less than or equal to x. This function is widely used
in scenarios where it's essential to truncate decimal or fractional parts of a number. For instance,
if x is 4.75, FLOOR(x) returns 4. FLOOR(x) is valuable in various applications, such as financial
calculations, statistical analysis, and data normalization, where obtaining the whole number or
integer portion of a value is necessary. By incorporating FLOOR(x) into SQL queries, database
developers and analysts can ensure accurate representation and handling of data, facilitating
precise calculations and meaningful insights in diverse domains.

ROUND(x, n):
Rounds x to the nearest integer or to n decimal places.

The ROUND(x, n) function in relational databases is a mathematical operation that rounds a
numeric value x to the nearest integer or to n decimal places, as specified. This function is
commonly used to manage precision in calculations and presentation of data. For example, if x is
4.756 and n is 2, ROUND(x, 2) would yield 4.76. The ROUND function is particularly useful in
financial computations, statistical analyses, and scenarios where a specific level of precision is
required. By incorporating ROUND(x, n) into SQL queries, database developers can control the
accuracy of numerical values, ensuring appropriate representation and adherence to specified
decimal places, thereby contributing to the integrity and reliability of data within the relational
database system.

TRUNC(x, n):
Truncates x to n decimal places.

The TRUNC(x, n) function in relational databases is a mathematical operation that truncates a
numeric value x to a specified number of decimal places (n) or removes the decimal portion
entirely. This function is valuable in scenarios where a specific level of precision needs to be
maintained or when simplifying data for presentation. For example, if x is 7.894 and n is 1,
TRUNC(x, 1) would yield 7.8. TRUNC is commonly used in financial calculations, scientific
applications, and any context where precise numeric representation is crucial. By employing
TRUNC(x, n) in SQL queries, database developers can ensure that numerical data aligns with
specific requirements, contributing to the accuracy and reliability of information stored in the
relational database system.

MOD(x, y):
Returns the remainder of x divided by y.

The MOD(x, y) function in relational databases calculates the remainder when the numeric value
x is divided by another numeric value y. This mathematical operation is particularly useful for
scenarios where understanding the remainder of a division is essential. For instance, MOD(17, 5)
would result in 2 because 17 divided by 5 equals 3 with a remainder of 2. This function finds
applications in diverse fields, including programming, finance, and data analysis. In SQL queries,
MOD(x, y) can be utilized to extract patterns or cycles within data, facilitating tasks such as

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

grouping, filtering, or highlighting specific numeric characteristics. Incorporating MOD into
database operations enhances the versatility of queries and supports more nuanced analysis of
numeric data stored in relational databases.

Practical Activity 3.2. Demonstrate to use math functions.
Material required: Laptop, Internet Connectivity, MySQL installed
Steps:
-- Create the numbers table
CREATE TABLE numbers (
id INT AUTO_INCREMENT PRIMARY KEY,
value DECIMAL(10, 2)
);
-- Insert sample data into the numbers table
INSERT INTO numbers (value) VALUES
(25.75),
(10.50),
(15.25),
(8.75);
- Calculate the remainder of dividing each value by 3
SELECT value, MOD(value, 3) AS remainder FROM numbers;
-- Truncate each value to 1 decimal place
SELECT value, TRUNCATE(value, 1) AS truncated_value FROM numbers;

String Functions:

String functions in relational databases offer a variety of tools for manipulating and analyzing
character data. CONCAT(string1, string2) enables the combination of two strings, facilitating the
creation of composite values. LENGTH(string) provides the count of characters within a string,
aiding in data validation or restriction tasks. The UPPER(string) and LOWER(string) functions
transform characters to uppercase or lowercase, respectively, ensuring consistent formatting.
SUBSTR(string, start_position, length) extracts a substring from a given position with a specified
length, aiding in data extraction. INSTR(string, substring) determines the position of the first
occurrence of a substring within a string, useful for pattern matching. LTRIM(string) and
RTRIM(string) remove leading and trailing spaces, enhancing data cleanliness.

These functions play a crucial role in SQL queries, offering capabilities for data cleansing,
formatting, and extraction, making them essential for various applications, from data preparation
to reporting. Their versatility and utility contribute to more effective handling of character data
within the relational database environment.

CONCAT(string1l, string2):
Concatenates two strings.

The CONCAT (stringl, string2) function in relational databases is a powerful tool for combining or
concatenating two strings. It takes two input strings, stringl and string2, and merges them into
a single string. This function is particularly useful when dealing with databases where information
is stored across multiple columns or when creating composite values for display or analysis.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII ﬂ

For example, in SQL queries, CONCAT can be employed to concatenate first and last names,
creating a full name field. Additionally, it is valuable for merging text from different columns or
constructing dynamic messages. Its versatility makes it a key asset in database management,
providing a seamless way to unify and present information. The CONCAT function simplifies data
handling, ensuring efficient and readable outcomes in various database applications.

LENGTH(string):
Returns the number of characters in the string.

The LENGTH(string) function in relational databases is designed to determine the number of
characters in a given string. This function provides a straightforward way to measure the length
of text, which can be valuable in tasks such as validating input sizes, formatting output, or
filtering based on string length.

For example, in SQL queries, LENGTH(string) can be utilized to check the length of a text field
and apply conditions or constraints accordingly. It is especially useful when dealing with variable-
length data or when there are specific requirements regarding the length of input values.

The result of LENGTH(string) is an integer representing the count of characters in the provided
string. This function is a practical tool for managing and analyzing textual data within a relational
database, offering a concise way to obtain information about the length of strings in a given
context.

UPPER(string):
Converts all characters in the string to uppercase.

The UPPER(string) function in relational databases is used to convert all characters within a given
string to uppercase. This function is particularly useful when you want to standardize the case of
text data, making it easier to compare or manipulate strings without being case-sensitive.

For example, in SQL queries, UPPER(string) can be applied to a column or a specific string value
to ensure that the text is represented in uppercase. This is beneficial for scenarios where case
distinctions are not relevant, and you want to perform consistent comparisons or analyses.

The result of UPPER(string) is a new string where all alphabetical characters from the input string
are converted to their uppercase equivalents, while non-alphabetical characters remain
unchanged. This function provides a convenient way to maintain data uniformity and enhance
the consistency of string-related operations within a relational database.

LOWER(string):
Converts all characters in the string to lowercase.

The LOWER(string) function in relational databases is employed to convert all characters within
a given string to lowercase. This function is valuable for standardizing the case of text data,
ensuring consistency and facilitating case-insensitive comparisons or manipulations of strings.

In SQL queries, LOWER(string) can be applied to a column or a specific string value. It produces
a new string where all alphabetical characters from the input string are transformed to their
lowercase equivalents, while non-alphabetical characters remain unchanged. This function is
particularly useful in scenarios where maintaining a uniform case is essential for data analysis,
searching, or sorting, irrespective of the original case in the database.

By using LOWER(string), you can enhance the coherence of string-related operations and simplify
tasks that involve comparing or processing text data in a case-insensitive manner within the
context of a relational database.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

SUBSTR(string, start_position, length):

Returns a substring of the given string starting from the specified position with the specified
length.

The SUBSTR(string, start position, length) function in relational databases is utilized to extract a
substring from a given string. It allows users to specify the starting position within the string and
the length of the desired substring. The function then returns a portion of the original string
based on these parameters.

In SQL queries, the SUBSTR function can be applied to a column or a specific string value. The
"string" parameter represents the original text, "start_position" denotes the position within the
string where the extraction begins (starting from 1 for the first character), and "length" determines
how many characters to include in the extracted substring.

For example, the query SUBSTR('Hello, World!', 1, 5) would return 'Hello', as it starts from the
first character and includes the next five characters.

This function is valuable for various tasks, such as extracting specific portions of text data,
manipulating strings based on character positions, or creating substrings for further analysis or
presentation.

INSTR(string, substring):
Returns the position of the first occurrence of a substring in the string.

The INSTR(string, substring) function in relational databases is employed to determine the
position of the first occurrence of a specified substring within a given string. It returns an integer
representing the position of the substring's first character within the string.

In SQL queries, the INSTR function helps identify the location of a particular substring within a
column or a specified string value. The "string" parameter represents the original text, while
"substring" is the sequence of characters being searched for. The function returns O if the
substring is not found in the string.

For instance, the query INSTR('Hello, World!', 'World') would return 8, as 'World' begins at the
eighth position in the string 'Hello, World!'.

This function is valuable for tasks like searching and locating specific patterns within text data.
It enables users to programmatically identify the position of substrings, facilitating further
manipulation or extraction of relevant information from strings in a database.

LTRIM(string):
Removes leading spaces from the string.

The LTRIM(string) function in relational databases is utilized to remove leading (or leftmost)
spaces from a given string. Leading spaces refer to any spaces or white spaces that appear at the
beginning of the string. The primary purpose of LTRIM is to cleanse the data by eliminating
unnecessary spaces from the left side of the text.

For example, consider the string ' Data Cleanup'. Applying LTRIM to this string would result in
'Data Cleanup' without the leading spaces.

In SQL queries, LTRIM is commonly used when dealing with data that may have irregular spacing
or when there's a need to standardize the format of strings. It ensures consistent data
presentation and aids in performing accurate comparisons or analyses. The function enhances
the overall data quality and is part of the set of string functions available for manipulating text in
relational databases.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

RTRIM(string):

Removes trailing spaces from the string.

The RTRIM(string) function in relational databases is designed to remove trailing (or rightmost)
spaces from a given string. Trailing spaces refer to any spaces or white spaces that appear at the

end of the string. The primary purpose of RTRIM is to clean up the data by eliminating
unnecessary spaces from the right side of the text.

For example, consider the string 'Data Cleanup '. Applying RTRIM to this string would result in
'Data Cleanup' without the trailing spaces.

Practical Activity 3.2. Demonstrate to use string functions.
Material required: Laptop, Internet Connectivity, MySQL installed
Steps:
-- Create the employees table
CREATE TABLE employees (
id INT AUTO_INCREMENT PRIMARY KEY,
first_ nameVARCHAR(50),
last_nameVARCHAR(50)
);
-- Insert sample data into the employees table
INSERT INTO employees (first_name, last name) VALUES
(John', 'Doe’),
(Jane', 'Smith'),
('Michael', 'Johnson');
-- Concatenate first name and last_name to create full_name
SELECT CONCAT(first_name, ' ', last_name) AS full name FROM employees;

In SQL queries, RTRIM is commonly used when dealing with data that may have irregular spacing
or when there's a need to standardize the format of strings. It ensures consistent data
presentation and aids in performing accurate comparisons or analyses. The function enhances
the overall data quality and is part of the set of string functions available for manipulating text in
relational databases.

Date/Time Functions Date/Time Functions in relational databases are vital for managing
temporal data efficiently. These functions enable users to handle, manipulate, and analyze date
and time information within SQL queries. Examples include:

SYSDATE:
Returns the current date and time.

The SYSDATE function is a Date /Time Function in SQL used to retrieve the current date and time
from the system clock of the database server. It does not require any parameters and is commonly
employed to capture the current timestamp for various purposes within SQL queries.

For example, as shown in Figure 3.61, a simple use case of ‘SYSDATE’ would be:

SELECT SYSDATE();

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII a

Fig. 3.61: ‘SYSDATE’

This query would return the current date and time. The ‘dual’ is a dummy table in some database
systems, like Oracle, used for selecting system-level values.

The output might look like:
cx

This timestamp can be utilized in queries for tasks such as recording the time of a transaction,
tracking changes in a table, or general timestamping within the database.

CURRENT DATE:
Returns the current date.

The CURRENT_DATE function is a Date/Time Function in SQL that retrieves the current date
from the system clock of the database server. Unlike SYSDATE, CURRENT_DATE typically returns
the current date without the time component. It's widely used when you only need the date
information for various purposes within SQL queries, as shown in Figure 3.62 and 3.63.

Here's an example.

oeve +

SELECT CURRENT_DATE() ;|

Fig. 3.62: CURRENT_DATE

The query would return the current date:

MariaDB [(none)]> SELECT CURRENT_DATE();

e +
| CURRENT_DATE() |
Fommm e +
| 2024-83-15 |
e +

1 row in set (0.010 sec)

MariaDB [(none)]> |}
Fig. 3.63: Returns the current date

Similar to SYSDATE, CURRENT_DATE is valuable for tasks such as recording dates, checking
against deadlines, or filtering data based on the current date in database operations.

CURRENT TIME:
Returns the current time.

The CURRENT_TIME function is a Date/Time Function in SQL used to retrieve the current time
from the system clock of the database server. This function is particularly useful when you need
to capture or work with the current time without the date component. The time is usually returned
in the format HH:MI:SS as shown in Figure 3.64 and 3.65.

Here's an example of how to use CURRENT_TIME in a SQL query:

oe0e |

SELECT CURRENT_TIME();

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII m

Fig. 3.64: CURRENT _TIME
The result might look like this:

MariaDB [(none)]> SELECT CURRENT_TIME();

o +
| CURRENT_TIME() |
e +
| 15:05:40 |
o +

1 row in set (0.000 sec)

MariaDB [(none)]=
Fig. 3.65: Returns the current time

This function is commonly applied in scenarios where only the time aspect is relevant, such as
logging events or scheduling tasks. Keep in mind that the actual format and precision of the time
returned might vary depending on the database system you are using.

ADD_MONTHS(date, n):
Adds n months to the given date.

The ADD_MONTHS function in SQL is a Date/Time Function used to add a specified number of
months to a given date. It is particularly useful for scenarios where you need to calculate a future
date by adding a certain number of months to an existing date as shown in Figure 3.66 and 3.67.

Here's an example of how to use ADD_MONTHS in a SQL query:
oeve -+

SELECT ADD_MONTHS("2823-01-15", 5) as future_date;

Fig. 3.66: ADD_MONTHS function in SQL

In this example 3.45, the function adds 3 months to the date '2023-01-15', and the result might
look like this:

MariaDB [(none)]= SELECT ADD MONTHS("2023-01-15", 5) as future date;

IR +
| future date |
IR +
| 2023-06-15 |
IR +

1 row in set (0.002 sec)

MariaDB [(none)]=
Fig. 3.67: Adds 3 months to the date '2023-01-15'

This function is beneficial for tasks involving date projections, such as forecasting or scheduling
future events. As always, the exact syntax and behavior might vary depending on the specific
database management system you are using.

MONTHS_BETWEEN(datel, date2):

Returns the number of months between two dates.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII

The MONTHS_BETWEEN function in SQL is a Date/Time Function that calculates the number of
months between two dates. It is often used to determine the difference in months between two
specific points in time as shown in Figure 3.68 and 3.69.

Here's an example of how to use MONTHS_BETWEEN in a SQL query:

oeve -+

SELECT TIMESTAMPDIFF (month, "2021-03-01", "2824-07-27"),

Fig. 3.68: MONTHS_BETWEEN function in SQL

In this example the function calculates the number of months between June 30, 2023, and
December 15, 2022. The result might look like this:

MariaDB [(none)]> SELECT TIMESTAMPDIFF (month, "2021-03-01", "2024-07-27");

o m o m e m e e mmmemamaa- +
| TIMESTAMPDIFF (month, "2021-03-01", "2024-07-27") |
o m o m e m e e mmmemamaa- +
I 40 |
T R L T +

1 row in set (0.000 sec)

MariaDB [(none)]=
Fig. 3.69: Calculates the number of months between June 30, 2023, and December 15, 2022
This indicates that there are approximately 6.48 months between the two specified dates.

MONTHS_BETWEEN is useful for various scenarios where you need to quantify the temporal
difference in terms of months. Keep in mind that the exact syntax and behavior of this function
can vary between different database management systems.

TO_CHAR(date, format):
Converts a date to a character string using the specified format.

The ‘TO_CHAR’ function is commonly used in SQL to convert a date or timestamp value to a
string with a specified format. The syntax for the ‘T'O_CHAR’ function is generally as shown in
Figure 3.70 and 3.71.

ove -+

TO_CHAR(date, format) ;|
Fig. 3.70: ‘TO_CHAR’

Here, ‘date’ is the date or timestamp value you want to convert, and ‘format’ is a string that
defines the format for the output. For example.

oeve -+

SELECT TO_CHAR(SYSDATE, "DD-MON-YYYY HH24:MI:S5") as formatted_date;

Fig. 3.71: Formatted_date

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII “

In this example, ‘SYSDATE’ is the current date and time in Oracle, and the format string 'DD-
MON-YYYY HH24:MI:SS' specifies the desired format for the output, including day, month
abbreviation, year, and time in 24-hour format.

Keep in mind that the exact format codes can vary depending on the database system you're
using. The example above is for Oracle Database. If you're using a different database, the format
codes might be different, so it's important to consult the documentation for your specific database.

Here are some common format codes that are often used in the “T'O_CHAR’ function:
‘YYYY’ or YY’: Four or two-digit year

‘MM’: Month (01-12)

‘MON’: Abbreviated month name

‘DD’: Day of the month (01-31)

‘HH’ or ‘HH12’: Hour (01-12)

‘HH24’: Hour (00-23)

‘MI’: Minutes (00-59)

‘SS’: Seconds (00-59)

Again, the exact codes may vary depending on the database system you are using, so it's
important to refer to the documentation for your specific database.

TO_DATE(string, format):
Converts a character string to a date using the specified format.

The TO_DATE function is commonly used in SQL to convert a string representation of a date or
timestamp into an actual date or timestamp value. The syntax for the TO_DATE function is
generally as shown in Figure 3.72 and 3.73.

ove -+

TO_DATE(string, format);

Fig. 3.72: TO_DATE

Here, string is the character string that represents the date, and format is a string that specifies
the format of the date in the input string. For example.

oeve -+

SELECT TO_DATE("2023-11-29", "YYYY-MM-DD") as converted_date;

Fig. 3.73: Converted_date

In this example, the string '2023-11-29' represents the date in the format specified by the format
string 'YYYY-MM-DD'. The TO_DATE function then converts this string into a date value.

Here are some common format codes that are often used in the TO_DATE function:
YYYY or YY: Four or two-digit year

MM: Month (01-12)

DD: Day of the month (01-31)

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII n

HH or HH12: Hour (01-12)

HH24: Hour (00-23)

MI: Minutes (00-39)

SS: Seconds (00-59)

The format codes should match the pattern of the date string you are trying to convert.

Keep in mind that the exact format codes can vary depending on the database system you're
using. If you're using a different database, the format codes might be different, so it's important
to consult the documentation for your specific database.

Additionally, be cautious when using the TO_DATE function to ensure that the format string
matches the actual format of the date string you're providing to avoid conversion errors.

EXTRACT(field FROM source):
Extracts a specific component (e.g., year, month, day) from a date or timestamp.

The EXTRACT function is commonly used in SQL to extract a specific component (such as year,
month, day, hour, etc.) from a date or timestamp. The syntax for the EXTRACT function is
generally as shown in Figure 3.74 and 3.75.

ove -+

EXTRACT (field FROM source);|

Fig. 3.74: EXTRACT

Here, field is the component you want to extract (e.g., YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND), and source is the date or timestamp from which you want to extract the specified
component. For example.

oeve -+

SELECT EXTRACT(YEAR FROM SYSDATE) as year,
EXTRACT (MONTH FROM SYSDATE) as month,
EXTRACT (DAY FROM SYSDATE) as day;

Fig. 3.75: The EXTRACT function

Practical Activity 3.3. Demonstrate the use Date and Time functions.
Material required: Laptop, Internet Connectivity, MySQL installed
Steps:

-- Create the orders table

CREATE TABLE orders (

order_id INT AUTO_INCREMENT PRIMARY KEY,

order_date DATE,

order_time TIME

);

-- Insert current date and time into the orders table

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII 100

INSERT INTO orders (order_date, order_time)

VALUES (CURDATE(), CURTIME());

-- Retrieve orders placed today

SELECT *

FROM orders

WHERE order_date = CURDATE();

-- Calculate age of orders

SELECT order_id, DATEDIFF(CURDATE(), order_date) AS age_in_days
FROM orders;

3.3 Aggregate Functions

Aggregate functions in SQL perform calculations on sets of values and return a single result.
Commonly used functions include COUNT)() (returns the number of rows), SUM() (sums numeric
values), AVG() (calculates the average), MIN() (finds the minimum value), and MAX() (finds the
maximum value). These functions are often combined with the GROUP BY clause to perform
calculations on subsets of data based on specific criteria. For example, you can use AVG() to find
the average salary per department. Aggregate functions are essential for summarizing and
analysing large datasets in SQL, providing valuable insights into the characteristics of the data.

Aggregate functions in SQL are used to perform calculations on sets of values and return a single
value as the result. These functions operate on multiple rows and are often used in conjunction
with the GROUP BY clause to perform operations on groups of data. Here are some common
aggregate functions:

COUNT|()
Returns the number of rows in a set.

The COUNT() function in SQL is used to count the number of rows in a result set or the number
of non-null values in a specified column. As shown in Figure 3.76, 3.77, 3.78, and 3.79 its basic
syntax.

ove -+

SELECT COUNT(column_name) FROM table_name WHERE condition;

Fig. 3.76: COUNT/() function in SQL

Here, column_name is the name of the column or expression to be counted, and table_name is
the name of the table from which to retrieve the data. The optional WHERE clause allows you to
specify conditions for counting, examples.

Count all rows in a table:

ove -+

SELECT COUNT(*) FROM employees;

Fig. 3.77: Count all rows in a table

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII 101

Count the number of employees in a specific department:

o0 e -+

SELECT COUNT(%) FROM employees WHERE department_name = "IT";|

Fig. 3.78: Count the number of employees in a specific department

Count the number of distinct values in a column:

ove -+

SELECT COUNT(DISTINCT column_name) FROM table_name;|

Fig. 3.79: Count the number of distinct values in a column

The COUNT() function is a versatile tool for obtaining counts in SQL queries, and it can be
combined with other functions and clauses for more complex analyses.

SUM():
Returns the sum of values in a numeric column.

The SUM() function in SQL is used to calculate the sum of values in a numeric column. Its basic
syntax as shown in Figure 3.80, 3.81 3.82 and 3.83.

oeve -+

SELECT SUM(column_name) FROM table_name WHERE cundition;|

Fig. 3.80: SUM() function in SQL

Here, column_name is the name of the column containing numeric values, and table_name is
the name of the table from which to retrieve the data. The optional WHERE clause allows you to
specify conditions for summing, examples.

Sum the salaries of all employees:

ove -+

SELECT SUM(salary) FROM employees;

Fig. 3.81: Sum the salaries of all employees

Sum the sales amounts for a specific product category:

ove -+

SELECT SUM({sales_amount)
FROM sales
WHERE product_catedory = "Electronics";

Fig. 3.82: Sum the sales amounts for a specific product category

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII 102

Sum the total order amounts for a specific customer:

o0 e +

SELECT SUM{order_amount)
FROM orders
WHERE customer_id = 123;

Fig. 3.83: Sum the total order amounts for a specific customer

The ‘SUM()’ function is useful for obtaining the total of numeric values in a column, providing
valuable insights into the cumulative impact of those values.

AVG()
Returns the average of values in a numeric column.

The ‘AVG()’ function in SQL is used to calculate the average (mean) value of numeric data in a
specified column. Its basic syntax is as shown in Figure 3.84, 3.85, 3.86 and 3.87.

o0 e 1

SELECT AVG(column_name)
FROM table_name
MHERE condition;

Fig. 3.84: ‘AVG()’ function in SQL

Here, ‘column_name’ is the name of the column containing numeric values, and ‘table_name’ is
the name of the table from which to retrieve the data. The optional ‘WHERE’ clause allows you to
specify conditions for calculating the average, Examples 3.53.

Calculate the average salary of all employees:

ove -+

SELECT AVG(salary) FROM employees;

Fig. 3.85: Calculate the average salary of all employees

Find the average product rating for a specific category:

ove -+

SELECT AVG(rating)
FROM products
WHERE catedory = "Electronics";

Fig. 3.86: Find the average product rating for a specific category

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII 103

Determine the average order value for a specific customer:

o0 e +

SELECT AVG(oxrdexr_amount)
FROM orders
WHERE customer_id = 123;

Fig. 3.87: Determine the average order value for a specific customer

The ‘AVG()’ function is valuable for understanding the central tendency of numeric data, providing
a representative measure of the "typical" value in a column.

MIN():
Returns the minimum value in a set.

The MIN() function in SQL is used to find the minimum (lowest) value in a set of values, typically
within a specified column. Its basic syntax is as shown in Figure 3.88, 3.89, 3.90 and 3.91.

o0 e

SELECT MIN(column_name)
FROM table_name
WHERE condition;

Fig. 3.88: MIN() function in SQL

Here, ‘column_name’ is the name of the column from which to find the minimum value, and
‘table_name’is the name of the table containing the data. The optional ‘WHERE’ clause allows
you to specify conditions for finding the minimum value, Examples.

Find the minimum salary among all employees:

o0 e 1

SELECT MIN(salary) FROM employees;

Fig. 3.89: Find the minimum salary among all employees

Identify the earliest order date in a specific region:

o0 e +

SELECT MIM(order_date) FROM orders WHERE region = "North"ﬂ

Fig. 3.90: Identify the earliest order date in a specific region
sql
Copy code
SELECT MIN(order_date) FROM orders WHERE region = 'North';

Determine the minimum product price in a particular category:

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII 104

ove -+

SELECT MIN(price) FROM products WHERE category = "Electronics";

Fig. 3.91: Determine the minimum product price in a particular category

The MIN() function is useful for extracting the smallest value from a set, providing insights into
the lower bounds of the data.

MAX():
Returns the maximum value in a set.

The ‘MAX()’ function in SQL is used to find the maximum (highest) value in a set of values,
typically within a specified column. Its basic syntax is as shown in Figure 3.92, 3.93, 3.94 and
3.95.

o0 e 1

SELECT MAX(column_name) FROM table_name WHERE conditionﬂ

Fig. 3.92: ‘MAX{)’ function in SQL
Here, ‘column_name’ is the name of the column from which to find the maximum value, and

‘table_name’ is the name of the table containing the data. The optional ‘WHERE’ clause allows
you to specify conditions for finding the maximum value, Examples 3.55.

Find the maximum salary among all employees:

ove -+

SELECT MAX(salary) FROM employeesﬂ

Fig. 3.93: Find the maximum salary among all employees

Identify the latest order date in a specific region:

ove

SELECT MAX(order_date) FROM orders WHERE region = "50uth";|

Fig. 3.94: Identify the latest order date in a specific region

Determine the maximum product price in a particular category:

o0 e H

SELECT MAX(price) FROM products WHERE category = "Electronics”;

Fig. 3.95: Determine the maximum product price in a particular category

The MAX() function is useful for extracting the largest value from a set, providing insights into the
upper bounds of the data.

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII 105

GROUP_CONCAT() or STRING_AGG() (Database-specific): Concatenates values from multiple
rows into a single string.

The GROUP_CONCAT() and STRING_AGG() functions (which are similar but database-specific)
are used to concatenate values from multiple rows into a single string, often used in conjunction
with the GROUP BY clause to concatenate values within each group. These functions are available
in different databases as shown in Figure 3.96 and .97.

MySQL (GROUP_CONCAT()): In MySQL, you can use ‘GROUP_CONCAT))’:

o0 e -+

SELECT column_name, GROUP_CONCAT(other_column) AS concatenated_values
FROM table_name
GROUP BY column_name;

Fig. 3.96: MySQL (GROUP_CONCATY))

This example 3.56 concatenates values from other column for each group defined by
column_name.

SQL Server (STRING_AGG()):
In SQL Server, you would use ‘STRING _AGG({)’:

ove

SELECT column_name, STRING_AGG(other_column, ", ")} AS concatenated_values
FROM table_name
GROUP BY column_nameﬂ

Fig. 3.97: SQL Server (STRING_AGG())
Here, the ‘STRING_AGG()’ function concatenates values from ‘other_column’ with a specified
delimiter (in this case, , followed by a space).
GROUPING SETS: Allows for the grouping of data across multiple dimensions.
‘GROUPING SETS’ is a SQL construct used for performing multiple grouping operations in a
single query. It allows you to specify multiple sets of grouping columns, and the query returns
the result set with subtotals for each specified set. This is helpful when you want to see
aggregations at different levels in a single result set as shown in Figure 3.98 and 3.99.

The basic syntax for ‘GROUPING SETS’ is as follows:

oe0e |

SELECT columnl, column2, ..., aggregate_function(column}

FROM table_name

GROUP BY GROUPING SETS(({(columnl, column2, ...}, (columnil, ...), (...));

Fig. 3.98: GROUPING SETS

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII 106

Here's a simple example to illustrate the concept. Suppose you have a table ‘sales’ with columns
‘region’, ‘product’, and ‘sales_amount’, and you want to get the total sales amount for each
region, each product, and overall:

ove |

SELECT region, product, SUM(sales_amount) AS total_sales
FROM sales
GROUP BY GROUPING SETS ((region, product), (region), {}}ﬂ

Fig. 3.99: Example for GROUPING SETS
In this example.
The first set (region, product) provides subtotals for each combination of region and product.
The second set (region) gives subtotals for each region.
The third set () provides the grand total.

GROUPING SETS allows for more flexibility than using multiple GROUP BY clauses, making it a
concise way to express complex grouping requirements in a single query. It's important to note
that not all database systems support GROUPING SETS, so you should check the documentation
for your specific database.

HAVING:
Specifies a condition to filter groups of rows based on the result of aggregate functions.

The HAVING clause in SQL is used in conjunction with the GROUP BY clause to filter the results
of a query based on conditions applied to aggregated data. While the WHERE clause filters rows
before they are grouped and aggregated, the HAVING clause filters the results after the grouping
and aggregation as shown in Figure 3.100 and 3.101.

The basic syntax of a query using the HAVING clause is as follows:
oeve +

SELECT columnl, column2, ..., aggregate_function(column}
FROM table_name

GROUP BY columnl, column2,

HAVING condition;

Fig. 3.100: HAVING

Here, columnl, column2, ... are the columns you are grouping by, aggregate function(column)
is an aggregate function like SUM, AVG, etc., and condition is the condition applied to the
aggregated values.

For example, if you have a table sales with columns product and total sales, and you want to
find products with a total sales greater than a certain amount:

PSS Central Institute of Vocational Education, NCERT, Bhopal

Web Developer, Grade XII 107

eve -+

SELECT product, SUM({total_sales) AS total
FROM sales

GROUP BY product

HAVING SUM(total_sales) > 10000;

Fig. 3.101: aggregate_function(column)

In this example 3.58, the HAVING clause filters the results to include only those products with a
total sales amount greater than 10,000.

The HAVING clause is particularly useful when you want to filter results based on aggregated
values, and it is often used in combination with the GROUP BY clause.

Know more....

Aggregate functions are powerful tools for summarizing and analyzing data in SQL. They
are commonly used in conjunction with the SELECT statement and GROUP BY clause to
generate meaningful insights from large datasets. It's important to note that the use of
aggregate functions often requires grouping the data appropriately, and the result is a
summary value for each group.

Practical Activity 3.4. Demonstrate Aggregate functions in SQL.
Material required
Laptop, Internet Connectivity, MySQL installed
Steps:
-- Create the sales table
CREATE TABLE sales (
id INT AUTO_INCREMENT PRIMARY KEY,
product_id INT,
quantity INT,
price DECIMAL(10, 2)
)
-- Insert sample data into the sales table
INSERT INTO sales (product_id, quantity, price) VALUES
(1, 5, 10.50),
(2, 3,15.75),
(1, 2, 20.00),
(3, 4, 8.25);
-- Count the number of records in the sales table
SELECT COUNT(*) AS total_sales FROM sales;
-- Calculate the total sales amount
SELECT SUM|(quantity * price) AS total_amou